IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Identification of Demand through Statistical Distribution Modeling for Improved Demand Forecasting

  • Murphy Choy
  • Michelle L. F. Cheong
Registered author(s):

    Demand functions for goods are generally cyclical in nature with characteristics such as trend or stochasticity. Most existing demand forecasting techniques in literature are designed to manage and forecast this type of demand functions. However, if the demand function is lumpy in nature, then the general demand forecasting techniques may fail given the unusual characteristics of the function. Proper identification of the underlying demand function and using the most appropriate forecasting technique becomes critical. In this paper, we will attempt to explore the key characteristics of the different types of demand function and relate them to known statistical distributions. By fitting statistical distributions to actual past demand data, we are then able to identify the correct demand functions, so that the the most appropriate forecasting technique can be applied to obtain improved forecasting results. We applied the methodology to a real case study to show the reduction in forecasting errors obtained.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/1110.0062
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 1110.0062.

    as
    in new window

    Length:
    Date of creation: Sep 2011
    Date of revision:
    Handle: RePEc:arx:papers:1110.0062
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    2. Bartezzaghi, Emilio & Verganti, Roberto, 1995. "Managing demand uncertainty through order overplanning," International Journal of Production Economics, Elsevier, vol. 40(2-3), pages 107-120, August.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.0062. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.