IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Portfolio Insurance under a risk-measure constraint

Listed author(s):
  • Carmine De Franco
  • Peter Tankov

We study the problem of portfolio insurance from the point of view of a fund manager, who guarantees to the investor that the portfolio value at maturity will be above a fixed threshold. If, at maturity, the portfolio value is below the guaranteed level, a third party will refund the investor up to the guarantee. In exchange for this protection, the third party imposes a limit on the risk exposure of the fund manager, in the form of a convex monetary risk measure. The fund manager therefore tries to maximize the investor's utility function subject to the risk measure constraint.We give a full solution to this nonconvex optimization problem in the complete market setting and show in particular that the choice of the risk measure is crucial for the optimal portfolio to exist. Explicit results are provided for the entropic risk measure (for which the optimal portfolio always exists) and for the class of spectral risk measures (for which the optimal portfolio may fail to exist in some cases).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://arxiv.org/pdf/1102.4489
File Function: Latest version
Download Restriction: no

Paper provided by arXiv.org in its series Papers with number 1102.4489.

as
in new window

Length:
Date of creation: Feb 2011
Handle: RePEc:arx:papers:1102.4489
Contact details of provider: Web page: http://arxiv.org/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
  2. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426.
  3. Susanne Emmer & Claudia Klüppelberg & Ralf Korn, 2001. "Optimal Portfolios with Bounded Capital at Risk," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 365-384.
  4. Black, Fischer & Perold, AndreF., 1992. "Theory of constant proportion portfolio insurance," Journal of Economic Dynamics and Control, Elsevier, vol. 16(3-4), pages 403-426.
  5. Gundel, Anne & Weber, Stefan, 2007. "Robust utility maximization with limited downside risk in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1663-1688, November.
  6. Rama Cont & Peter Tankov, 2007. "Constant Proportion Portfolio Insurance in presence of Jumps in Asset Prices," Working Papers hal-00129413, HAL.
  7. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
  8. M. Kaina & L. Rüschendorf, 2009. "On convex risk measures on L p -spaces," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 475-495, July.
  9. Rama Cont & Peter Tankov, 2009. "Constant Proportion Portfolio Insurance In The Presence Of Jumps In Asset Prices," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 379-401.
  10. repec:dau:papers:123456789/342 is not listed on IDEAS
  11. El Karoui, Nicole & Jeanblanc, Monique & Lacoste, Vincent, 2005. "Optimal portfolio management with American capital guarantee," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 449-468, March.
  12. Phelim Boyle & Weidong Tian, 2007. "Portfolio Management With Constraints," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 319-343.
  13. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1102.4489. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.