IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v347y2025i3d10.1007_s10479-024-06390-x.html
   My bibliography  Save this article

Value-at-risk constrained portfolios in incomplete markets: a dynamic programming approach to Heston’s model

Author

Listed:
  • Marcos Escobar-Anel

    (Western University)

  • Yevhen Havrylenko

    (Technical University of Munich
    University of Copenhagen
    Ulm University)

  • Rudi Zagst

    (Technical University of Munich)

Abstract

We solve an expected utility-maximization problem with a Value-at-risk constraint on the terminal portfolio value in an incomplete financial market due to stochastic volatility. To derive the optimal investment strategy, we use the dynamic programming approach. We demonstrate that the value function in the constrained problem can be represented as the expected modified utility function of a vega-neutral financial derivative on the optimal terminal wealth in the unconstrained utility-maximization problem. Via the same financial derivative, the optimal wealth and the optimal investment strategy in the constrained problem are linked to the optimal wealth and the optimal investment strategy in the unconstrained problem. In numerical studies, we substantiate the impact of risk aversion levels and investment horizons on the optimal investment strategy. We observe a $$20\%$$ 20 % relative difference between the constrained and unconstrained allocations for average parameters in a low-risk-aversion short-horizon setting.

Suggested Citation

  • Marcos Escobar-Anel & Yevhen Havrylenko & Rudi Zagst, 2025. "Value-at-risk constrained portfolios in incomplete markets: a dynamic programming approach to Heston’s model," Annals of Operations Research, Springer, vol. 347(3), pages 1265-1309, April.
  • Handle: RePEc:spr:annopr:v:347:y:2025:i:3:d:10.1007_s10479-024-06390-x
    DOI: 10.1007/s10479-024-06390-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06390-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06390-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Morten Tolver Kronborg & Mogens Steffensen, 2015. "Optimal consumption, investment and life insurance with surrender option guarantee," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2015(1), pages 59-87, January.
    2. Phelim Boyle & Weidong Tian, 2007. "Portfolio Management With Constraints," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 319-343, July.
    3. Marcos Escobar-Anel, 2022. "A dynamic programming approach to path-dependent constrained portfolios," Annals of Operations Research, Springer, vol. 315(1), pages 141-157, August.
    4. He, Hua & Pearson, Neil D., 1991. "Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case," Journal of Economic Theory, Elsevier, vol. 54(2), pages 259-304, August.
    5. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    6. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    7. Gundel, Anne & Weber, Stefan, 2007. "Robust utility maximization with limited downside risk in incomplete markets," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1663-1688, November.
    8. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case1," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10, July.
    9. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    10. El Karoui, Nicole & Jeanblanc, Monique & Lacoste, Vincent, 2005. "Optimal portfolio management with American capital guarantee," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 449-468, March.
    11. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    12. Traian A. Pirvu, 2007. "Portfolio optimization under the Value-at-Risk constraint," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 125-136.
    13. Domenico Cuoco & Hua He & Sergei Isaenko, 2008. "Optimal Dynamic Trading Strategies with Risk Limits," Operations Research, INFORMS, vol. 56(2), pages 358-368, April.
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    15. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    16. Kraft, Holger & Steffensen, Mogens, 2013. "A dynamic programming approach to constrained portfolios," European Journal of Operational Research, Elsevier, vol. 229(2), pages 453-461.
    17. Chen, An & Nguyen, Thai & Stadje, Mitja, 2018. "Optimal investment under VaR-Regulation and Minimum Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 194-209.
    18. Jan Kallsen & Johannes Muhle-Karbe, 2010. "Utility Maximization In Affine Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 459-477.
    19. Basak, Suleyman, 1995. "A General Equilibrium Model of Portfolio Insurance," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1059-1090.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, An & Nguyen, Thai & Stadje, Mitja, 2018. "Optimal investment under VaR-Regulation and Minimum Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 194-209.
    2. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    3. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    4. Marcos Escobar-Anel, 2022. "A dynamic programming approach to path-dependent constrained portfolios," Annals of Operations Research, Springer, vol. 315(1), pages 141-157, August.
    5. Thai Nguyen & Mitja Stadje, 2018. "Optimal investment for participating insurance contracts under VaR-Regulation," Papers 1805.09068, arXiv.org, revised Jul 2019.
    6. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    7. Chufang Wu & Jia-Wen Gu & Wai-Ki Ching & Chi-Wing Wong, 2024. "Precommitted Strategies with Initial-Time and Intermediate-Time Value-at-Risk Constraints," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 880-919, October.
    8. M. Escobar-Anel & M. Kschonnek & R. Zagst, 2023. "Mind the cap!—constrained portfolio optimisation in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 23(12), pages 1793-1813, November.
    9. An Chen & Thai Nguyen & Mitja Stadje, 2018. "Risk management with multiple VaR constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(2), pages 297-337, October.
    10. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    11. Matoussi, Anis & Xing, Hao, 2018. "Convex duality for Epstein-Zin stochastic differential utility," LSE Research Online Documents on Economics 82519, London School of Economics and Political Science, LSE Library.
    12. repec:dau:papers:123456789/5374 is not listed on IDEAS
    13. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    14. Jang, Bong-Gyu & Park, Seyoung, 2016. "Ambiguity and optimal portfolio choice with Value-at-Risk constraint," Finance Research Letters, Elsevier, vol. 18(C), pages 158-176.
    15. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    16. Mi, Hui & Xu, Zuo Quan, 2023. "Optimal portfolio selection with VaR and portfolio insurance constraints under rank-dependent expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 82-105.
    17. De Franco, Carmine & Tankov, Peter, 2011. "Portfolio insurance under a risk-measure constraint," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 361-370.
    18. Frank Bosserhoff & An Chen & Nils Sorensen & Mitja Stadje, 2021. "On the Investment Strategies in Occupational Pension Plans," Papers 2104.08956, arXiv.org.
    19. Chen, An & Hieber, Peter & Nguyen, Thai, 2019. "Constrained non-concave utility maximization: An application to life insurance contracts with guarantees," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1119-1135.
    20. Fießinger, Felix & Stadje, Mitja, 2025. "Mean-variance optimization for participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 122(C), pages 230-248.
    21. Felix Fie{ss}inger & Mitja Stadje, 2024. "Mean-Variance Optimization for Participating Life Insurance Contracts," Papers 2407.11761, arXiv.org, revised Mar 2025.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:347:y:2025:i:3:d:10.1007_s10479-024-06390-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.