IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1004.3830.html
   My bibliography  Save this paper

Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model

Author

Listed:
  • Gareth W. Peters
  • Balakrishnan Kannan
  • Ben Lasscock
  • Chris Mellen

Abstract

This paper develops a matrix-variate adaptive Markov chain Monte Carlo (MCMC) methodology for Bayesian Cointegrated Vector Auto Regressions (CVAR). We replace the popular approach to sampling Bayesian CVAR models, involving griddy Gibbs, with an automated efficient alternative, based on the Adaptive Metropolis algorithm of Roberts and Rosenthal, (2009). Developing the adaptive MCMC framework for Bayesian CVAR models allows for efficient estimation of posterior parameters in significantly higher dimensional CVAR series than previously possible with existing griddy Gibbs samplers. For a n-dimensional CVAR series, the matrix-variate posterior is in dimension $3n^2 + n$, with significant correlation present between the blocks of matrix random variables. We also treat the rank of the CVAR model as a random variable and perform joint inference on the rank and model parameters. This is achieved with a Bayesian posterior distribution defined over both the rank and the CVAR model parameters, and inference is made via Bayes Factor analysis of rank. Practically the adaptive sampler also aids in the development of automated Bayesian cointegration models for algorithmic trading systems considering instruments made up of several assets, such as currency baskets. Previously the literature on financial applications of CVAR trading models typically only considers pairs trading (n=2) due to the computational cost of the griddy Gibbs. We are able to extend under our adaptive framework to $n >> 2$ and demonstrate an example with n = 10, resulting in a posterior distribution with parameters up to dimension 310. By also considering the rank as a random quantity we can ensure our resulting trading models are able to adjust to potentially time varying market conditions in a coherent statistical framework.

Suggested Citation

  • Gareth W. Peters & Balakrishnan Kannan & Ben Lasscock & Chris Mellen, 2010. "Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model," Papers 1004.3830, arXiv.org.
  • Handle: RePEc:arx:papers:1004.3830
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1004.3830
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Geweke, John, 1996. "Bayesian reduced rank regression in econometrics," Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 39(3), pages 106-135.
    3. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    4. Sugita, Katsuhiro, 2002. "Testing for Cointegration Rank Using Bayes Factors," Royal Economic Society Annual Conference 2002 171, Royal Economic Society.
    5. Strachan, Rodney W. & Inder, Brett, 2004. "Bayesian analysis of the error correction model," Journal of Econometrics, Elsevier, vol. 123(2), pages 307-325, December.
    6. BAUWENS, Luc & LUBRANO , Michel, 1994. "Identification Restrictions and Posterior Densities in Cointegrated Gaussian VAR Systems," CORE Discussion Papers 1994018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. BAUWENS, Luc & GIOT, Pierre, 1997. "A Gibbs sampling approach to cointegration," CORE Discussion Papers 1997016, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Katsuhiro Sugita, 2009. "A Monte Carlo comparison of Bayesian testing for cointegration rank," Economics Bulletin, AccessEcon, vol. 29(3), pages 2145-2151.
    9. Rodney Strachan & Herman K. van Dijk, "undated". "Bayesian Model Averaging in Vector Autoregressive Processes with an Investigation of Stability of the US Great Ratios and Risk of a Liquidity Trap in the USA, UK and Japan," MRG Discussion Paper Series 1407, School of Economics, University of Queensland, Australia.
    10. J. Vermaak & C. Andrieu & A. Doucet & S. J. Godsill, 2004. "Reversible Jump Markov Chain Monte Carlo Strategies for Bayesian Model Selection in Autoregressive Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(6), pages 785-809, November.
    11. Kleibergen, Frank & van Dijk, Herman K., 1994. "On the Shape of the Likelihood/Posterior in Cointegration Models," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 514-551, August.
    12. Kleibergen, Frank & Paap, Richard, 2002. "Priors, posteriors and bayes factors for a Bayesian analysis of cointegration," Journal of Econometrics, Elsevier, vol. 111(2), pages 223-249, December.
    13. Gary Koop & Rodney Strachan & Herman van Dijk & Mattias Villani, 2004. "Bayesian Approaches to Cointegration," Discussion Papers in Economics 04/27, Department of Economics, University of Leicester.
    14. Sugita, Katsuhiro, 2002. "Testing For Cointegration Rank Using Bayes Factors," The Warwick Economics Research Paper Series (TWERPS) 654, University of Warwick, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, Elsevier.
    2. Peters, Gareth W. & Dong, Alice X.D. & Kohn, Robert, 2014. "A copula based Bayesian approach for paid–incurred claims models for non-life insurance reserving," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 258-278.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1004.3830. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.