IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Reflected Backward Stochastic Difference Equations with Finite State and their applications

  • Lifen An
  • Shaolin Ji
Registered author(s):

    In this paper, we first establish the reflected backward stochastic difference equations with finite state (FS-RBSDEs for short). Then we explore the Existence and Uniqueness Theorem as well as the Comparison Theorem by "one step" method. The connections between FS-RBSDEs and optimal stopping time problems are investigated and we also show that the optimal stopping problems with multiple priors under Knightian uncertainty is a special case of our FS-RBSDEs. As a byproduct we develop the general theory of g-martingales in discrete time with finite state including Doob-Mayer Decomposition Theorem and Optional Sampling Theorem. Finally, we consider the pricing models of American Option in both complete and incomplete markets.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1001.3054.

    in new window

    Date of creation: Jan 2010
    Date of revision: Dec 2012
    Handle: RePEc:arx:papers:1001.3054
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Frank Riedel, 2009. "Optimal Stopping With Multiple Priors," Econometrica, Econometric Society, vol. 77(3), pages 857-908, 05.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1001.3054. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.