IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1202.2999.html
   My bibliography  Save this paper

Optimal arbitrage under model uncertainty

Author

Listed:
  • Daniel Fernholz
  • Ioannis Karatzas

Abstract

In an equity market model with "Knightian" uncertainty regarding the relative risk and covariance structure of its assets, we characterize in several ways the highest return relative to the market that can be achieved using nonanticipative investment rules over a given time horizon, and under any admissible configuration of model parameters that might materialize. One characterization is in terms of the smallest positive supersolution to a fully nonlinear parabolic partial differential equation of the Hamilton--Jacobi--Bellman type. Under appropriate conditions, this smallest supersolution is the value function of an associated stochastic control problem, namely, the maximal probability with which an auxiliary multidimensional diffusion process, controlled in a manner which affects both its drift and covariance structures, stays in the interior of the positive orthant through the end of the time-horizon. This value function is also characterized in terms of a stochastic game, and can be used to generate an investment rule that realizes such best possible outperformance of the market.

Suggested Citation

  • Daniel Fernholz & Ioannis Karatzas, 2012. "Optimal arbitrage under model uncertainty," Papers 1202.2999, arXiv.org.
  • Handle: RePEc:arx:papers:1202.2999
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1202.2999
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Ioannis Karatzas & Song Yao, 2009. "Optimal Stopping for Dynamic Convex Risk Measures," Papers 0909.4948, arXiv.org, revised Nov 2009.
    2. Nicole El Karoui & Monique Jeanblanc-Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126.
    3. Tiziano Vargiolu & Silvia Romagnoli, 2000. "Robustness of the Black-Scholes approach in the case of options on several assets," Finance and Stochastics, Springer, vol. 4(3), pages 325-341.
    4. Joerg Vorbrink, 2010. "Financial markets with volatility uncertainty," Papers 1012.1535, arXiv.org, revised Dec 2010.
    5. RØdiger Frey, 2000. "Superreplication in stochastic volatility models and optimal stopping," Finance and Stochastics, Springer, vol. 4(2), pages 161-187.
    6. Marcel Nutz, 2010. "Random G-expectations," Papers 1009.2168, arXiv.org, revised Sep 2013.
    7. Alexander Schied, 2007. "Optimal investments for risk- and ambiguity-averse preferences: a duality approach," Finance and Stochastics, Springer, vol. 11(1), pages 107-129, January.
    8. Fausto Gozzi & Tiziano Vargiolu, 2002. "Superreplication of European multiasset derivatives with bounded stochastic volatility," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(1), pages 69-91, March.
    9. Mitchel Y. Abolafia (ed.), 2005. "Markets," Books, Edward Elgar Publishing, number 2788.
    10. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    11. Erhan Bayraktar & Song Yao, 2009. "Optimal Stopping for Non-linear Expectations," Papers 0905.3601, arXiv.org, revised Jan 2011.
    12. Vorbrink, Jörg, 2017. "Financial markets with volatility uncertainty," Center for Mathematical Economics Working Papers 441, Center for Mathematical Economics, Bielefeld University.
    13. Robert Fernholz & Ioannis Karatzas, 2005. "Relative arbitrage in volatility-stabilized markets," Annals of Finance, Springer, vol. 1(2), pages 149-177, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1202.2999. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.