IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asymptotic Power Utility-Based Pricing and Hedging

  • Jan Kallsen
  • Johannes Muhle-Karbe
  • Richard Vierthauer
Registered author(s):

    Kramkov and Sirbu (2006, 2007) have shown that first-order approximations of power utility-based prices and hedging strategies can be computed by solving a mean-variance hedging problem under a specific equivalent martingale measure and relative to a suitable numeraire. In order to avoid the introduction of an additional state variable necessitated by the change of numeraire, we propose an alternative representation in terms of the original numeraire. More specifically, we characterize the relevant quantities using semimartingale characteristics similarly as in Cerny and Kallsen (2007) for mean-variance hedging. These results are illustrated by applying them to exponential L\'evy processes and stochastic volatility models of Barndorff-Nielsen and Shephard type.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/0912.3362
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number 0912.3362.

    as
    in new window

    Length:
    Date of creation: Dec 2009
    Date of revision: Jan 2013
    Handle: RePEc:arx:papers:0912.3362
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Kramkov, D. & Sîrbu, M., 2007. "Asymptotic analysis of utility-based hedging strategies for small number of contingent claims," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1606-1620, November.
    2. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
    3. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    4. Ales Čern�, 2007. "Optimal Continuous-Time Hedging With Leptokurtic Returns," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 175-203.
    5. Marcel Nutz, 2009. "The Bellman equation for power utility maximization with semimartingales," Papers 0912.1883, arXiv.org, revised Mar 2012.
    6. Jan Kallsen & Richard Vierthauer, 2009. "Quadratic hedging in affine stochastic volatility models," Review of Derivatives Research, Springer, vol. 12(1), pages 3-27, April.
    7. Friedrich Hubalek & Jan Kallsen & Leszek Krawczyk, 2006. "Variance-optimal hedging for processes with stationary independent increments," Papers math/0607112, arXiv.org.
    8. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    9. Marcel Nutz, 2009. "The Opportunity Process for Optimal Consumption and Investment with Power Utility," Papers 0912.1879, arXiv.org, revised Jun 2010.
    10. Ale\v{s} \v{C}ern\'y & Jan Kallsen, 2007. "On the structure of general mean-variance hedging strategies," Papers 0708.1715, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.3362. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.