IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0912.3362.html
   My bibliography  Save this paper

Asymptotic Power Utility-Based Pricing and Hedging

Author

Listed:
  • Jan Kallsen
  • Johannes Muhle-Karbe
  • Richard Vierthauer

Abstract

Kramkov and Sirbu (2006, 2007) have shown that first-order approximations of power utility-based prices and hedging strategies can be computed by solving a mean-variance hedging problem under a specific equivalent martingale measure and relative to a suitable numeraire. In order to avoid the introduction of an additional state variable necessitated by the change of numeraire, we propose an alternative representation in terms of the original numeraire. More specifically, we characterize the relevant quantities using semimartingale characteristics similarly as in Cerny and Kallsen (2007) for mean-variance hedging. These results are illustrated by applying them to exponential L\'evy processes and stochastic volatility models of Barndorff-Nielsen and Shephard type.

Suggested Citation

  • Jan Kallsen & Johannes Muhle-Karbe & Richard Vierthauer, 2009. "Asymptotic Power Utility-Based Pricing and Hedging," Papers 0912.3362, arXiv.org, revised Jan 2013.
  • Handle: RePEc:arx:papers:0912.3362
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0912.3362
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Julien Hugonnier & Dmitry Kramkov, 2004. "Optimal investment with random endowments in incomplete markets," Papers math/0405293, arXiv.org.
    2. Ales Černý, 2007. "Optimal Continuous-Time Hedging With Leptokurtic Returns," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 175-203.
    3. Goll, Thomas & Kallsen, Jan, 2000. "Optimal portfolios for logarithmic utility," Stochastic Processes and their Applications, Elsevier, vol. 89(1), pages 31-48, September.
    4. Marcel Nutz, 2009. "The Opportunity Process for Optimal Consumption and Investment with Power Utility," Papers 0912.1879, arXiv.org, revised Jun 2010.
    5. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    6. Friedrich Hubalek & Jan Kallsen & Leszek Krawczyk, 2006. "Variance-optimal hedging for processes with stationary independent increments," Papers math/0607112, arXiv.org.
    7. Marcel Nutz, 2009. "The Bellman equation for power utility maximization with semimartingales," Papers 0912.1883, arXiv.org, revised Mar 2012.
    8. Jan Kallsen & Richard Vierthauer, 2009. "Quadratic hedging in affine stochastic volatility models," Review of Derivatives Research, Springer, vol. 12(1), pages 3-27, April.
    9. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
    10. Kramkov, D. & Sîrbu, M., 2007. "Asymptotic analysis of utility-based hedging strategies for small number of contingent claims," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1606-1620, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.3362. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.