IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0912.1879.html
   My bibliography  Save this paper

The Opportunity Process for Optimal Consumption and Investment with Power Utility

Author

Listed:
  • Marcel Nutz

Abstract

We study the utility maximization problem for power utility random fields in a semimartingale financial market, with and without intermediate consumption. The notion of an opportunity process is introduced as a reduced form of the value process of the resulting stochastic control problem. We show how the opportunity process describes the key objects: optimal strategy, value function, and dual problem. The results are applied to obtain monotonicity properties of the optimal consumption.

Suggested Citation

  • Marcel Nutz, 2009. "The Opportunity Process for Optimal Consumption and Investment with Power Utility," Papers 0912.1879, arXiv.org, revised Jun 2010.
  • Handle: RePEc:arx:papers:0912.1879
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0912.1879
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sasha F. Stoikov & Thaleia Zariphopoulou, 2005. "Dynamic Asset Allocation And Consumption Choice In Incomplete Markets ," Australian Economic Papers, Wiley Blackwell, vol. 44(4), pages 414-454, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bayraktar, Erhan & Kravitz, Ross, 2013. "Stability of exponential utility maximization with respect to market perturbations," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1671-1690.
    2. Jan Kallsen & Johannes Muhle-Karbe & Richard Vierthauer, 2009. "Asymptotic Power Utility-Based Pricing and Hedging," Papers 0912.3362, arXiv.org, revised Jan 2013.
    3. Dirk Becherer & Martin Buttner & Klebert Kentia, 2016. "On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples," Papers 1607.06644, arXiv.org.
    4. Richter, Anja, 2014. "Explicit solutions to quadratic BSDEs and applications to utility maximization in multivariate affine stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 124(11), pages 3578-3611.
    5. Horst, Ulrich & Hu, Ying & Imkeller, Peter & Réveillac, Anthony & Zhang, Jianing, 2014. "Forward–backward systems for expected utility maximization," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1813-1848.
    6. Ariel Neufeld & Marcel Nutz, 2015. "Robust Utility Maximization with L\'evy Processes," Papers 1502.05920, arXiv.org, revised Mar 2016.
    7. Xing, Hao, 2017. "Stability of the exponential utility maximization problem with respect to preferences," LSE Research Online Documents on Economics 57213, London School of Economics and Political Science, LSE Library.
    8. Frei, Christoph & Mocha, Markus & Westray, Nicholas, 2012. "BSDEs in utility maximization with BMO market price of risk," Stochastic Processes and their Applications, Elsevier, vol. 122(6), pages 2486-2519.
    9. Kramkov, Dmitry & Weston, Kim, 2016. "Muckenhoupt’s (Ap) condition and the existence of the optimal martingale measure," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2615-2633.
    10. Markus Mocha & Nicholas Westray, 2011. "The Stability of the Constrained Utility Maximization Problem - A BSDE Approach," Papers 1107.0190, arXiv.org.
    11. Zhou Yang & Gechun Liang & Chao Zhou, 2017. "Constrained portfolio-consumption strategies with uncertain parameters and borrowing costs," Papers 1711.02939, arXiv.org.
    12. Christoph Frei & Markus Mocha & Nicholas Westray, 2011. "BSDEs in Utility Maximization with BMO Market Price of Risk," Papers 1107.0183, arXiv.org, revised Feb 2012.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0912.1879. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.