IDEAS home Printed from
   My bibliography  Save this paper

Bayesian Inference on QGARCH Model Using the Adaptive Construction Scheme


  • Tetsuya Takaishi


We study the performance of the adaptive construction scheme for a Bayesian inference on the Quadratic GARCH model which introduces the asymmetry in time series dynamics. In the adaptive construction scheme a proposal density in the Metropolis-Hastings algorithm is constructed adaptively by changing the parameters of the density to fit the posterior density. Using artificial QGARCH data we infer the QGARCH parameters by applying the adaptive construction scheme to the Bayesian inference of QGARCH model. We find that the adaptive construction scheme samples QGARCH parameters effectively, i.e. correlations between the sampled data are very small. We conclude that the adaptive construction scheme is an efficient method to the Bayesian estimation of the QGARCH model.

Suggested Citation

  • Tetsuya Takaishi, 2009. "Bayesian Inference on QGARCH Model Using the Adaptive Construction Scheme," Papers 0907.5276,
  • Handle: RePEc:arx:papers:0907.5276

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    2. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tetsuya Takaishi, 2009. "Markov Chain Monte Carlo on Asymmetric GARCH Model Using the Adaptive Construction Scheme," Papers 0909.1478,
    2. Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0907.5276. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.