IDEAS home Printed from https://ideas.repec.org/p/ags/umaesp/13982.html
   My bibliography  Save this paper

An Application Of Bayesian Vector Autoregression To The U.S. Turkey Market

Author

Listed:
  • Ford, Stephen A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Ford, Stephen A., 1986. "An Application Of Bayesian Vector Autoregression To The U.S. Turkey Market," Staff Papers 13982, University of Minnesota, Department of Applied Economics.
  • Handle: RePEc:ags:umaesp:13982
    DOI: 10.22004/ag.econ.13982
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/13982/files/p86-29.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.13982?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    2. David A. Bessler & John L. Kling, 1986. "Forecasting Vector Autoregressions with Bayesian Priors," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(1), pages 144-151.
    3. Robert B. Litterman, 1984. "Specifying vector autoregressions for macroeconomic forecasting," Staff Report 92, Federal Reserve Bank of Minneapolis.
    4. Ford, Stephen A., 1986. "A Beginner'S Guide To Vector Autoregression," Staff Papers 13527, University of Minnesota, Department of Applied Economics.
    5. Robert B. Litterman, 1979. "Techniques of forecasting using vector autoregressions," Working Papers 115, Federal Reserve Bank of Minneapolis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ford, Stephen A., 1986. "A Beginner'S Guide To Vector Autoregression," Staff Papers 13527, University of Minnesota, Department of Applied Economics.
    2. Francisco F. R. Ramos, 1996. "VAR Priors: Success or lack of a decent macroeconomic theory?," Econometrics 9601002, University Library of Munich, Germany.
    3. William M. Lupoletti & Roy H. Webb, 1984. "Defining and improving the accuracy of macroeconomic forecasts : contributions from a VAR model," Working Paper 84-06, Federal Reserve Bank of Richmond.
    4. Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
    5. Ray C. Fair & Robert J. Shiller, 1987. "Econometric Modeling as Information Aggregation," NBER Working Papers 2233, National Bureau of Economic Research, Inc.
    6. Fuentes-Albero, Cristina & Melosi, Leonardo, 2013. "Methods for computing marginal data densities from the Gibbs output," Journal of Econometrics, Elsevier, vol. 175(2), pages 132-141.
    7. Starck, Christian, 1991. "Specifying a Bayesian vector autoregression for short-run macroeconomic forecasting with an application to Finland," Research Discussion Papers 4/1991, Bank of Finland.
    8. Jarociński, Marek & Marcet, Albert, 2019. "Priors about observables in vector autoregressions," Journal of Econometrics, Elsevier, vol. 209(2), pages 238-255.
    9. Espinosa Acuña, Óscar A. & Vaca González, Paola A. & Avila Forero, Raúl A., 2013. "Elasticidades de demanda por electricidad e impactos macroecon_omicos del precio de la energía eléctrica en Colombia || Elasticity of Electricity Demand and Macroeconomics Impacts of Electricity Price," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 216-249, December.
    10. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2014. "Signals from the Government: Policy Uncertainty and the Transmission of Fiscal Shocks," MPRA Paper 56136, University Library of Munich, Germany.
    11. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    12. Fair, Ray C & Shiller, Robert J, 1989. "The Informational Context of Ex Ante Forecasts," The Review of Economics and Statistics, MIT Press, vol. 71(2), pages 325-331, May.
    13. Enrique M. Quilis(1), "undated". "Modelos Bvar: Especificación, Estimación E Inferencia," Working Papers 8-02 Classification-JEL :, Instituto de Estudios Fiscales.
    14. Tadashi Yamada, 1985. "The Crime Rate and the Condition of the Labor Market: A Vector Autoregressive Model," NBER Working Papers 1782, National Bureau of Economic Research, Inc.
    15. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    16. Scheffel, Eric Michael, 2012. "Political uncertainty in a data-rich environment," MPRA Paper 37318, University Library of Munich, Germany.
    17. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    18. Florkowski, Wojciech J. & Lai, Yue, 1997. "Cointegration Between Prices of Pecans and Other Edible Nuts: Forecasting and Implications," 1997 Annual Meeting, July 13-16, 1997, Reno\ Sparks, Nevada 35870, Western Agricultural Economics Association.
    19. Ricco, Giovanni & Callegari, Giovanni & Cimadomo, Jacopo, 2016. "Signals from the government: Policy disagreement and the transmission of fiscal shocks," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 107-118.
    20. Lars Peter Hansen & Thomas J. Sargent, 1981. "Exact linear rational expectations models: specification and estimation," Staff Report 71, Federal Reserve Bank of Minneapolis.

    More about this item

    Keywords

    Livestock Production/Industries; Marketing;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:umaesp:13982. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/daumnus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/daumnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.