IDEAS home Printed from https://ideas.repec.org/p/ags/ucbecw/47000.html
   My bibliography  Save this paper

Stigler's approach to recovering the distribution of first significant digits in natural data sets

Author

Listed:
  • Lee, Joanne
  • Cho, Wendy K.
  • Judge, George G.

Abstract

In 1881, Newcomb conjectured that the first significant digits (FSDs) of numbers in statistical tables would follow a logarithmic distribution with the digit “1” occurring most often. However, because Newcomb’s proposal was not presented with a theoretical basis, it was not given much attention. Fifty-seven years later, Benford argued for the same principle and showed it was relevant to a large range of data sets, and the logarithmic FSD distribution became known as “Benford’s Law.” In the mid-1940s, Stigler claimed Benford’s Law contained a theoretical inconsistency and supplied an alternative derivation for the distribution of FSDs. In this paper, we examine the theoretical basis of the Stigler distribution and extend his reasoning by incorporating FSD first moment information and information-theoretic methods.

Suggested Citation

  • Lee, Joanne & Cho, Wendy K. & Judge, George G., 2009. "Stigler's approach to recovering the distribution of first significant digits in natural data sets," CUDARE Working Papers 47000, University of California, Berkeley, Department of Agricultural and Resource Economics.
  • Handle: RePEc:ags:ucbecw:47000
    DOI: 10.22004/ag.econ.47000
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/47000/files/CUDARE%201072%20Judge.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.47000?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pietronero, L. & Tosatti, E. & Tosatti, V. & Vespignani, A., 2001. "Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(1), pages 297-304.
    2. Rodriguez R.J., 2004. "First Significant Digit Patterns From Mixtures of Uniform Distributions," The American Statistician, American Statistical Association, vol. 58, pages 64-71, February.
    3. Tam Cho, Wendy K. & Gaines, Brian J., 2007. "Breaking the (Benford) Law: Statistical Fraud Detection in Campaign Finance," The American Statistician, American Statistical Association, vol. 61, pages 218-223, August.
    4. Grendar, Marian & Judge, George & Schechter, Laura, 2007. "An empirical non-parametric likelihood family of data-based Benford-like distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 429-438.
    5. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henry-Osorio, Miguel & Mittelhammer, Ronald C., 2012. "An Information-Theoretic Approach to Modeling Binary Choices: Estimating Willingness to Pay for Recreation Site Attributes," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 123432, Agricultural and Applied Economics Association.
    2. Hürlimann, Werner, 2015. "On the uniform random upper bound family of first significant digit distributions," Journal of Informetrics, Elsevier, vol. 9(2), pages 349-358.
    3. Henry, Miguel & Mittelhammer, Ron & Loomis, John, 2018. "An Information-Theoretic Approach to Estimating Willingness To Pay for River Recreation Site Attributes," MPRA Paper 89842, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Morrow, 2014. "Benford's Law, Families of Distributions and a Test Basis," CEP Discussion Papers dp1291, Centre for Economic Performance, LSE.
    2. repec:cdl:agrebk:qt9745m98d is not listed on IDEAS
    3. George Judge & Laura Schechter, 2009. "Detecting Problems in Survey Data Using Benford’s Law," Journal of Human Resources, University of Wisconsin Press, vol. 44(1).
    4. Matthew A. Cole & David J. Maddison & Liyun Zhang, 2020. "Testing the emission reduction claims of CDM projects using the Benford’s Law," Climatic Change, Springer, vol. 160(3), pages 407-426, June.
    5. Tariq Ahmad Mir & Marcel Ausloos & Roy Cerqueti, 2014. "Benford's law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions," Papers 1410.2890, arXiv.org.
    6. Mir, T.A., 2014. "The Benford law behavior of the religious activity data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 1-9.
    7. Villas-Boas, Sofia B. & Fu, Qiuzi & Judge, George, 2017. "Benford’s law and the FSD distribution of economic behavioral micro data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 711-719.
    8. Lee, Joanne & Judge, George G., 2008. "Identifying falsified clinical data," CUDARE Working Papers 47001, University of California, Berkeley, Department of Agricultural and Resource Economics.
    9. repec:cdl:agrebk:qt8x00h1c1 is not listed on IDEAS
    10. Parnes, Dror, 2022. "Banks' off-balance sheet manipulations," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 314-331.
    11. repec:lrk:lrkwkp:fiirs016 is not listed on IDEAS
    12. Axel Tonini & Roel Jongeneel, 2009. "The distribution of dairy farm size in Poland: a markov approach based on information theory," Applied Economics, Taylor & Francis Journals, vol. 41(1), pages 55-69.
    13. Ronelle Burger & Canh Thien Dang & Trudy Owens, 2017. "Better performing NGOs do report more accurately: Evidence from investigating Ugandan NGO financial accounts," Discussion Papers 2017-10, University of Nottingham, CREDIT.
    14. Miguel Henry & George Judge, 2019. "Permutation Entropy and Information Recovery in Nonlinear Dynamic Economic Time Series," Econometrics, MDPI, vol. 7(1), pages 1-16, March.
    15. Roy Cerqueti & Claudio Lupi, 2023. "Severe testing of Benford’s law," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 677-694, June.
    16. Hyeok Lee & Yong Kyun Kim, 2018. "The effects of external shocks on the Korean economy: CGE model-based analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-14, December.
    17. Wang, Yafeng & Graham, Brett, 2009. "Generalized Maximum Entropy estimation of discrete sequential move games of perfect information," MPRA Paper 21331, University Library of Munich, Germany.
    18. Shao, Zhi-Gang & Jian-Ping Sang, & Zou, Xian-Wu & Tan, Zhi-Jie & Jin, Zhun-Zhi, 2005. "Blackmail propagation on small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 351(2), pages 662-670.
    19. Arndt, Channing & Simler, Kenneth R., 2005. "Estimating utility-consistent poverty lines," FCND briefs 189, International Food Policy Research Institute (IFPRI).
    20. Luca Secondi, 2019. "Expiry Dates, Consumer Behavior, and Food Waste: How Would Italian Consumers React If There Were No Longer “Best Before” Labels?," Sustainability, MDPI, vol. 11(23), pages 1-15, December.
    21. Wobst, Peter & Arndt, Channing, 2004. "HIV/AIDS and Labor Force Upgrading in Tanzania," World Development, Elsevier, vol. 32(11), pages 1831-1847, November.
    22. Esteban Fernandez-Vazquez & Bart Los & Carmen Ramos-Carvajal, 2008. "Using Additional Information in Structural Decomposition Analysis: The Path-based Approach," Economic Systems Research, Taylor & Francis Journals, vol. 20(4), pages 367-394.
    23. Amos Golan & Stephen Vogel, 2000. "Estimation of Non-Stationary Social Accounting Matrix Coefficients with Supply-Side Information," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 447-471.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ucbecw:47000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.