IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v50y2016i1p271-281.html
   My bibliography  Save this article

The leading digit distribution of the worldwide illicit financial flows

Author

Listed:
  • T. Mir

Abstract

The illicit financial flows (IFFs) exiting the developing countries are frequently discussed as hidden resources which could have been otherwise properly utilized for their development. Further, in the context of overhaul of the global financial system, necessitated by the current financial crisis, the IFFs have generated a lot of media and public interest which in turn has however also triggered a debate on the validity of these estimates. To look for completeness or rather for possible manipulation of financial data, forensic analysts routinely use a statistical tool called Benford’s law which states that in data sets from different phenomena leading digits tend to be distributed logarithmically such that the numbers beginning with smaller digits occur more often than those with larger ones. In order to gain some insight on their validity we investigate here the recent data on estimates of IFFs for conformity to Benford’s law. We find the patterns in the distribution of the leading digits in the IFFs data similar as predicted by Benford’s law and thereby establish that the frequency of occurrence of the leading digits in these estimates does closely follow the law. Copyright Springer Science+Business Media Dordrecht 2016

Suggested Citation

  • T. Mir, 2016. "The leading digit distribution of the worldwide illicit financial flows," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(1), pages 271-281, January.
  • Handle: RePEc:spr:qualqt:v:50:y:2016:i:1:p:271-281
    DOI: 10.1007/s11135-014-0147-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-014-0147-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-014-0147-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bernhard Rauch & Max Göttsche & Gernot Brähler & Stefan Engel, 2011. "Fact and Fiction in EU‐Governmental Economic Data," German Economic Review, Verein für Socialpolitik, vol. 12(3), pages 243-255, August.
    2. Pietronero, L. & Tosatti, E. & Tosatti, V. & Vespignani, A., 2001. "Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 293(1), pages 297-304.
    3. Mr. Gonzalo C Pastor Campos & Mr. Jesus R Gonzalez-Garcia, 2009. "Benford’s Law and Macroeconomic Data Quality," IMF Working Papers 2009/010, International Monetary Fund.
    4. Nye John & Moul Charles, 2007. "The Political Economy of Numbers: On the Application of Benford's Law to International Macroeconomic Statistics," The B.E. Journal of Macroeconomics, De Gruyter, vol. 7(1), pages 1-14, July.
    5. Mir, T.A., 2014. "The Benford law behavior of the religious activity data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 1-9.
    6. Mir, T.A., 2012. "The law of the leading digits and the world religions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 792-798.
    7. David Giles, 2007. "Benford's law and naturally occurring prices in certain ebaY auctions," Applied Economics Letters, Taylor & Francis Journals, vol. 14(3), pages 157-161.
    8. Tariq Ahmad Mir & Marcel Ausloos & Roy Cerqueti, 2014. "Benford's law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions," Papers 1410.2890, arXiv.org.
    9. Tomasz Michalski & Gilles Stoltz, 2013. "Do Countries Falsify Economic Data Strategically? Some Evidence That They Might," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 591-616, May.
    10. George Judge & Laura Schechter, 2009. "Detecting Problems in Survey Data Using Benford’s Law," Journal of Human Resources, University of Wisconsin Press, vol. 44(1).
    11. repec:cai:poeine:pope_204_0753 is not listed on IDEAS
    12. Léonce Ndikumana & James Boyce, 2010. "Measurement of Capital Flight: Methodology and Results for Sub-Saharan African Countries," African Development Review, African Development Bank, vol. 22(4), pages 471-481.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ausloos, Marcel & Cerqueti, Roy & Mir, Tariq A., 2017. "Data science for assessing possible tax income manipulation: The case of Italy," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 238-256.
    2. Ausloos, Marcel & Ficcadenti, Valerio & Dhesi, Gurjeet & Shakeel, Muhammad, 2021. "Benford’s laws tests on S&P500 daily closing values and the corresponding daily log-returns both point to huge non-conformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    3. Bogdan Vasile Ileanu & Marcel Ausloos & Claudiu Herteliu & Marian Pompiliu Cristescu, 2019. "Intriguing behavior when testing the impact of quotation marks usage in Google search results," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2507-2519, September.
    4. Riccioni, Jessica & Cerqueti, Roy, 2018. "Regular paths in financial markets: Investigating the Benford's law," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 186-194.
    5. Cerqueti, Roy & Maggi, Mario, 2021. "Data validity and statistical conformity with Benford’s Law," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. A. Mir, 2016. "The leading digit distribution of the worldwide illicit financial flows," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(1), pages 271-281, January.
    2. Tariq Ahmad Mir & Marcel Ausloos & Roy Cerqueti, 2014. "Benford's law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions," Papers 1410.2890, arXiv.org.
    3. Holz, Carsten A., 2014. "The quality of China's GDP statistics," China Economic Review, Elsevier, vol. 30(C), pages 309-338.
    4. Mir, T.A., 2014. "The Benford law behavior of the religious activity data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 1-9.
    5. Ausloos, Marcel & Cerqueti, Roy & Mir, Tariq A., 2017. "Data science for assessing possible tax income manipulation: The case of Italy," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 238-256.
    6. Ausloos, Marcel & Castellano, Rosella & Cerqueti, Roy, 2016. "Regularities and discrepancies of credit default swaps: a data science approach through Benford's law," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 8-17.
    7. Vadim S. Balashov & Yuxing Yan & Xiaodi Zhu, 2020. "Who Manipulates Data During Pandemics? Evidence from Newcomb-Benford Law," Papers 2007.14841, arXiv.org, revised Jan 2021.
    8. Marcel Ausloos & Rosella Castellano & Roy Cerqueti, 2016. "Regularities and Discrepancies of Credit Default Swaps: a Data Science approach through Benford's Law," Papers 1603.01103, arXiv.org.
    9. Clippe, Paulette & Ausloos, Marcel, 2012. "Benford’s law and Theil transform of financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6556-6567.
    10. Bormashenko, Ed. & Shulzinger, E. & Whyman, G. & Bormashenko, Ye., 2016. "Benford’s law, its applicability and breakdown in the IR spectra of polymers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 524-529.
    11. Whyman, G. & Ohtori, N. & Shulzinger, E. & Bormashenko, Ed., 2016. "Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 595-601.
    12. Koch, Christoffer & Okamura, Ken, 2020. "Benford’s Law and COVID-19 reporting," Economics Letters, Elsevier, vol. 196(C).
    13. Cerqueti, Roy & Maggi, Mario, 2021. "Data validity and statistical conformity with Benford’s Law," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    14. Ausloos, M. & Herteliu, C. & Ileanu, B., 2015. "Breakdown of Benford’s law for birth data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 736-745.
    15. Lee, Joanne & Judge, George G, 2008. "Identifying falsified clinical data," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8x00h1c1, Department of Agricultural & Resource Economics, UC Berkeley.
    16. Theoharry Grammatikos & Nikolaos I. Papanikolaou, 2021. "Applying Benford’s Law to Detect Accounting Data Manipulation in the Banking Industry," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(1), pages 115-142, April.
    17. Tariq Ahmad Mir, 2012. "The leading digit distribution of the worldwide Illicit Financial Flows," Papers 1201.3432, arXiv.org, revised Nov 2012.
    18. Montag, Josef, 2017. "Identifying odometer fraud in used car market data," Transport Policy, Elsevier, vol. 60(C), pages 10-23.
    19. Huang, Yasheng & Niu, Zhiyong & Yang, Clair, 2020. "Testing firm-level data quality in China against Benford’s Law," Economics Letters, Elsevier, vol. 192(C).
    20. Montag, Josef, 2015. "Identifying Odometer Fraud: Evidence from the Used Car Market in the Czech Republic," MPRA Paper 65182, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:50:y:2016:i:1:p:271-281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.