IDEAS home Printed from https://ideas.repec.org/h/nbr/nberch/15322.html
   My bibliography  Save this book chapter

Comment on "Science in the Age of Algorithms"

In: The Economics of Transformative AI

Author

Listed:
  • Ajay Agrawal
  • John McHale
  • Alexander Oettl

Abstract

No abstract is available for this item.

Suggested Citation

  • Ajay Agrawal & John McHale & Alexander Oettl, 2025. "Comment on "Science in the Age of Algorithms"," NBER Chapters, in: The Economics of Transformative AI, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberch:15322
    as

    Download full text from publisher

    File URL: http://www.nber.org/chapters/c15322.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Agrawal, Ajay & McHale, John & Oettl, Alexander, 2024. "Artificial intelligence and scientific discovery: a model of prioritized search," Research Policy, Elsevier, vol. 53(5).
    2. Drew Fudenberg & Jon Kleinberg & Annie Liang & Sendhil Mullainathan, 2022. "Measuring the Completeness of Economic Models," Journal of Political Economy, University of Chicago Press, vol. 130(4), pages 956-990.
    3. Jens Ludwig & Sendhil Mullainathan, 2024. "Machine Learning as a Tool for Hypothesis Generation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(2), pages 751-827.
    4. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    5. Ajay Agrawal & John McHale & Alexander Oettl, 2023. "Superhuman science: How artificial intelligence may impact innovation," Journal of Evolutionary Economics, Springer, vol. 33(5), pages 1473-1517, November.
    6. Sendhil Mullainathan & Ashesh Rambachan, 2024. "From Predictive Algorithms to Automatic Generation of Anomalies," Papers 2404.10111, arXiv.org, revised Sep 2025.
    7. Sendhil Mullainathan & Ashesh Rambachan, 2025. "Science in the Age of Algorithms," NBER Chapters, in: The Economics of Transformative AI, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ajay K. Agrawal & John McHale & Alexander Oettl, 2025. "AI in Science," NBER Chapters, in: Economics of Science, National Bureau of Economic Research, Inc.
    2. Annie Liang, 2025. "Using Machine Learning to Generate, Clarify, and Improve Economic Models," Papers 2508.19136, arXiv.org.
    3. Heller, Yuval & Tubul, Itay, 2023. "Strategies in the repeated prisoner’s dilemma: A cluster analysis," MPRA Paper 117444, University Library of Munich, Germany.
    4. Agrawal, Ajay & McHale, John & Oettl, Alexander, 2024. "Artificial intelligence and scientific discovery: a model of prioritized search," Research Policy, Elsevier, vol. 53(5).
    5. Luca Grilli & Sergio Mariotti & Riccardo Marzano, 2024. "Artificial intelligence and shapeshifting capitalism," Journal of Evolutionary Economics, Springer, vol. 34(2), pages 303-318, April.
    6. Jacob Carlson, 2025. "Making Interpretable Discoveries from Unstructured Data: A High-Dimensional Multiple Hypothesis Testing Approach," Papers 2511.01680, arXiv.org.
    7. Wu, Yifan & Yuan, Yiming & Song, Xueyin, 2025. "The impact of AI adoption on R&D productivity: Evidence from Chinese pharmaceutical manufacturing industry," Journal of Asian Economics, Elsevier, vol. 97(C).
    8. Joshua Foster & Fredrik Odegaard, 2025. "Decoding Consumer Preferences Using Attention-Based Language Models," Papers 2507.17564, arXiv.org.
    9. repec:osf:osfxxx:kaeny_v1 is not listed on IDEAS
    10. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    11. Peng, Qiao & McKillop, Donal & Quinn, Barry & Liu, Kailong, 2025. "Modeling and predicting failure in US credit unions," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1237-1259.
    12. Shoshan, Vered & Hazan, Tamir & Plonsky, Ori, 2023. "BEAST-Net: Learning novel behavioral insights using a neural network adaptation of a behavioral model," OSF Preprints kaeny, Center for Open Science.
    13. Yang Haodong & Liu Jialin & Wang Gaofeng, 2025. "Knowledge Innovation Effect of University Computing Power in China: Evidence from the top500 Supercomputers," Research in Higher Education, Springer;Association for Institutional Research, vol. 66(1), pages 1-30, February.
    14. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    15. Stéphane Helleringer & Insa Diouf & Cheikh Tidiane Ndiaye & Laetitia Douillot & Valerie Delaunay & Rene Vidal & Laurence Fleury & Chong You, 2019. "Improving age measurement in low- and middle-income countries through computer vision: A test in Senegal," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(9), pages 219-260.
    16. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    17. Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
    18. Hurmeranta, Risto & Lyytikäinen, Teemu, 2025. "Nominal Loss Aversion in the Housing Market and Household Mobility," Working Papers 178, VATT Institute for Economic Research.
    19. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    20. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    21. Thiemo Fetzer & Stephan Kyburz, 2024. "Cohesive Institutions and Political Violence," The Review of Economics and Statistics, MIT Press, vol. 106(1), pages 133-150, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberch:15322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.