IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2511.01680.html
   My bibliography  Save this paper

Making Interpretable Discoveries from Unstructured Data: A High-Dimensional Multiple Hypothesis Testing Approach

Author

Listed:
  • Jacob Carlson

Abstract

Social scientists are increasingly turning to unstructured datasets to unlock new empirical insights, e.g., estimating causal effects on text outcomes, measuring beliefs from open-ended survey responses. In such settings, unsupervised analysis is often of interest, in that the researcher does not want to pre-specify the objects of measurement or otherwise artificially delimit the space of measurable concepts; they are interested in discovery. This paper proposes a general and flexible framework for pursuing discovery from unstructured data in a statistically principled way. The framework leverages recent methods from the literature on machine learning interpretability to map unstructured data points to high-dimensional, sparse, and interpretable dictionaries of concepts; computes (test) statistics of these dictionary entries; and then performs selective inference on them using newly developed statistical procedures for high-dimensional exceedance control of the $k$-FWER under arbitrary dependence. The proposed framework has few researcher degrees of freedom, is fully replicable, and is cheap to implement -- both in terms of financial cost and researcher time. Applications to recent descriptive and causal analyses of unstructured data in empirical economics are explored. An open source Jupyter notebook is provided for researchers to implement the framework in their own projects.

Suggested Citation

  • Jacob Carlson, 2025. "Making Interpretable Discoveries from Unstructured Data: A High-Dimensional Multiple Hypothesis Testing Approach," Papers 2511.01680, arXiv.org.
  • Handle: RePEc:arx:papers:2511.01680
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2511.01680
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2511.01680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.