IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i3p1237-1259.html

Modeling and predicting failure in US credit unions

Author

Listed:
  • Peng, Qiao
  • McKillop, Donal
  • Quinn, Barry
  • Liu, Kailong

Abstract

This study presents a random forest (RF)-based machine learning model to predict the liquidation of US credit unions one year in advance. The model demonstrates impressive accuracy on the test set (97.9% accuracy, with 2.0% false negatives and 8.8% false positives) when utilizing all 44 factors. Simplifying the model to only the top five factors based on feature importance analysis results in a slightly lower, but still significant, accuracy on the test set (92.2% accuracy, with 7.8% false negatives and 17.6% false positives). Comparisons with seven other classification methods verify the superiority of the RF model. This study also uses the Cox proportional-hazards model and Shapley value-based approaches to interpret key feature significance and interactions. The model provides regulators and credit unions with a valuable early warning system for potential failures, enabling corrective measures or strategic mergers to ultimately protect the National Credit Union Share Insurance Fund.

Suggested Citation

  • Peng, Qiao & McKillop, Donal & Quinn, Barry & Liu, Kailong, 2025. "Modeling and predicting failure in US credit unions," International Journal of Forecasting, Elsevier, vol. 41(3), pages 1237-1259.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:3:p:1237-1259
    DOI: 10.1016/j.ijforecast.2024.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024001328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Abreu Vasconcellos de Paula & Rinaldo Artes & Fabio Ayres & Andrea Maria Accioly Fonseca Minardi, 2019. "Estimating credit and profit scoring of a Brazilian credit union with logistic regression and machine-learning techniques," RAUSP Management Journal, Emerald Group Publishing Limited, vol. 54(3), pages 321-336, July.
    2. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    3. Liu, Ruicheng & Pun, Chi Seng, 2022. "Machine-Learning-enhanced systemic risk measure: A Two-Step supervised learning approach," Journal of Banking & Finance, Elsevier, vol. 136(C).
    4. David C. Wheelock & Paul W. Wilson, 2000. "Why do Banks Disappear? The Determinants of U.S. Bank Failures and Acquisitions," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 127-138, February.
    5. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    6. Petropoulos, Anastasios & Siakoulis, Vasilis & Stavroulakis, Evangelos & Vlachogiannakis, Nikolaos E., 2020. "Predicting bank insolvencies using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1092-1113.
    7. James A. Wilcox, 2005. "Economies of scale and continuing consolidation of credit unions," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue nov4.
    8. repec:eme:mfppss:03074350110767141 is not listed on IDEAS
    9. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    10. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    11. Demyanyk, Yuliya & Hasan, Iftekhar, 2010. "Financial crises and bank failures: A review of prediction methods," Omega, Elsevier, vol. 38(5), pages 315-324, October.
    12. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    13. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    14. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    15. Jamie Coen & William B. Francis & May Rostom, 2019. "The Determinants of Credit Union Failure: Insights from the United Kingdom," International Journal of Central Banking, International Journal of Central Banking, vol. 15(4), pages 207-240, October.
    16. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    17. Steven Deller & Reka Sundaram-Stukel, 2012. "Spatial patterns in the location decisions of US credit unions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(2), pages 417-445, October.
    18. Pille, Peter & Paradi, Joseph C., 2002. "Financial performance analysis of Ontario (Canada) Credit Unions: An application of DEA in the regulatory environment," European Journal of Operational Research, Elsevier, vol. 139(2), pages 339-350, June.
    19. John Goddard & Hong Liu & Donal Mckillop & John O.S. Wilson, 2014. "The Size Distribution of US Banks and Credit Unions," International Journal of the Economics of Business, Taylor & Francis Journals, vol. 21(1), pages 139-156, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Yuan & Long Tang & Xueyuan Yang & Fanqin Xu & Kailong Liu, 2025. "Explainable Machine Learning Prediction of Vehicle CO 2 Emissions for Sustainable Energy and Transport," Energies, MDPI, vol. 18(20), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
    2. Andini, Monica & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Salvestrini, Viola, 2018. "Targeting with machine learning: An application to a tax rebate program in Italy," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 86-102.
    3. Andini, Monica & Boldrini, Michela & Ciani, Emanuele & de Blasio, Guido & D'Ignazio, Alessio & Paladini, Andrea, 2022. "Machine learning in the service of policy targeting: The case of public credit guarantees," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 434-475.
    4. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    5. Md Mohsan Khudri & Kang Keun Rhee & Mohammad Shabbir Hasan & Karar Zunaid Ahsan, 2023. "Predicting nutritional status for women of childbearing age from their economic, health, and demographic features: A supervised machine learning approach," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-31, May.
    6. Galdo, Virgilio & Li, Yue & Rama, Martin, 2021. "Identifying urban areas by combining human judgment and machine learning: An application to India," Journal of Urban Economics, Elsevier, vol. 125(C).
    7. Onder Ozgur & Erdal Tanas Karagol & Fatih Cemil Ozbugday, 2021. "Machine learning approach to drivers of bank lending: evidence from an emerging economy," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-29, December.
    8. Ajit Desai, 2023. "Machine Learning for Economics Research: When What and How?," Papers 2304.00086, arXiv.org, revised Apr 2023.
    9. Achten, Sandra & Lessmann, Christian, 2020. "Spatial inequality, geography and economic activity," World Development, Elsevier, vol. 136(C).
    10. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    11. Paolo Brunori & Vito Peragine & Laura Serlenga, 2019. "Upward and downward bias when measuring inequality of opportunity," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(4), pages 635-661, April.
    12. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    13. Ajay Agrawal & Joshua S. Gans & Avi Goldfarb, 2019. "Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 31-50, Spring.
    14. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    15. Manav Raj & Robert Seamans, 2019. "Primer on artificial intelligence and robotics," Journal of Organization Design, Springer;Organizational Design Community, vol. 8(1), pages 1-14, December.
    16. Paolo Brunori & Paul Hufe & Daniel Mahler, 2023. "The roots of inequality: estimating inequality of opportunity from regression trees and forests," Scandinavian Journal of Economics, Wiley Blackwell, vol. 125(4), pages 900-932, October.
    17. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020. "lassopack: Model selection and prediction with regularized regression in Stata," Stata Journal, StataCorp LLC, vol. 20(1), pages 176-235, March.
    18. Bauer, Kevin & Pfeuffer, Nicolas & Abdel-Karim, Benjamin M. & Hinz, Oliver & Kosfeld, Michael, 2020. "The terminator of social welfare? The economic consequences of algorithmic discrimination," SAFE Working Paper Series 287, Leibniz Institute for Financial Research SAFE.
    19. Alessandra Garbero & Marco Letta, 2022. "Predicting household resilience with machine learning: preliminary cross-country tests," Empirical Economics, Springer, vol. 63(4), pages 2057-2070, October.
    20. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:3:p:1237-1259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.