IDEAS home Printed from https://ideas.repec.org/e/pin67.html
   My authors  Follow this author

Salvatore Ingrassia

Personal Details

First Name:Salvatore
Middle Name:
Last Name:Ingrassia
Suffix:
RePEc Short-ID:pin67
http://www.economia.unict.it/ingrassia/

Affiliation

Dipartimento di Economia e Impresa
Università degli Studi di Catania

Catania, Italy
http://www.dei.unict.it/

: +39.095.7537511
+39.095.7537510
C.so Italia, 55 - Catania
RePEc:edi:fecatit (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Salvatore Ingrassia & Simona Caterina Minotti & Giorgio Vittadini, 2011. "Local Statistical Modeling via Cluster-Weighted Approach with Elliptical Distributions," Working Papers 20111001, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.

Articles

  1. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
  2. Francesca Greselin & Salvatore Ingrassia & Antonio Punzo, 2011. "Assessing the pattern of covariance matrices via an augmentation multiple testing procedure," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 141-170, June.
  3. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
  4. Ingrassia, Salvatore & Rocci, Roberto, 2007. "Constrained monotone EM algorithms for finite mixture of multivariate Gaussians," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5339-5351, July.
  5. G. Damiana Costanzo & Salvatore Ingrassia & Angelo Mazza & Paolo Cozzucoli, 2007. "Indicatori statistici per la valutazione della soddisfazione didattica universitaria," RIVISTA DI ECONOMIA E STATISTICA DEL TERRITORIO, FrancoAngeli Editore, vol. 2007(3), pages 77-89.
  6. Ingrassia, Salvatore, 1999. "Geometrical Aspects of Discrimination by Multilayer Perceptrons," Journal of Multivariate Analysis, Elsevier, vol. 68(2), pages 226-234, February.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Salvatore Ingrassia & Simona Caterina Minotti & Giorgio Vittadini, 2011. "Local Statistical Modeling via Cluster-Weighted Approach with Elliptical Distributions," Working Papers 20111001, Università degli Studi di Milano-Bicocca, Dipartimento di Statistica.

    Cited by:

    1. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    2. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    3. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 85-113, April.
    4. Leonardo Grilli & Maria Iannario & Domenico Piccolo & Carla Rampichini, 2014. "Latent class CUB models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 105-119, March.
    5. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    6. Wu, Qiang & Yao, Weixin, 2016. "Mixtures of quantile regressions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 162-176.
    7. Perthame, Emeline & Forbes, Florence & Deleforge, Antoine, 2018. "Inverse regression approach to robust nonlinear high-to-low dimensional mapping," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 1-14.
    8. Ingrassia, Salvatore & Minotti, Simona C. & Punzo, Antonio, 2014. "Model-based clustering via linear cluster-weighted models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 159-182.
    9. Antonio Punzo & Salvatore Ingrassia, 2016. "Clustering bivariate mixed-type data via the cluster-weighted model," Computational Statistics, Springer, vol. 31(3), pages 989-1013, September.
    10. Paolo Berta & Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini, 2016. "Multilevel cluster-weighted models for the evaluation of hospitals," METRON, Springer;Sapienza Università di Roma, vol. 74(3), pages 275-292, December.
    11. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    12. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
    13. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2015. "Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 623-649, November.
    14. Hien Nguyen & Geoffrey McLachlan, 2015. "Maximum likelihood estimation of Gaussian mixture models without matrix operations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 371-394, December.
    15. Gabriella Schoier & Adriana Monte, 2014. "On the use of cluster analysis for individuating variable influence on spread variation in large datasets," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - Italian Review of Economics, Demography and Statistics, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 68(1), pages 223-229, January-M.

Articles

  1. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    See citations under working paper version above.
  2. Francesca Greselin & Salvatore Ingrassia & Antonio Punzo, 2011. "Assessing the pattern of covariance matrices via an augmentation multiple testing procedure," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(2), pages 141-170, June.

    Cited by:

    1. Maruotti, Antonello & Punzo, Antonio, 2017. "Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 475-496.
    2. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    3. Dariush Najarzadeh & Mojtaba Khazaei & Mojtaba Ganjali, 2015. "Testing for equality of ordered eigenvectors of two multivariate normal populations," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 57-72, April.

  3. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.

    Cited by:

    1. Nicosia, Aurélien & Duchesne, Thierry & Rivest, Louis-Paul & Fortin, Daniel, 2017. "A general hidden state random walk model for animal movement," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 76-95.
    2. Lloyd-Jones, Luke R. & Nguyen, Hien D. & McLachlan, Geoffrey J., 2018. "A globally convergent algorithm for lasso-penalized mixture of linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 19-38.
    3. Hien Nguyen & Geoffrey McLachlan, 2015. "Maximum likelihood estimation of Gaussian mixture models without matrix operations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 371-394, December.

  4. Ingrassia, Salvatore & Rocci, Roberto, 2007. "Constrained monotone EM algorithms for finite mixture of multivariate Gaussians," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5339-5351, July.

    Cited by:

    1. Antonio Punzo & Paul. D. McNicholas, 2017. "Robust Clustering in Regression Analysis via the Contaminated Gaussian Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 249-293, July.
    2. García-Escudero, Luis Angel & Gordaliza, Alfonso & Greselin, Francesca & Ingrassia, Salvatore & Mayo-Iscar, Agustín, 2016. "The joint role of trimming and constraints in robust estimation for mixtures of Gaussian factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 131-147.
    3. Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
    4. Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
    5. L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2013. "Comments on: model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 459-461, November.
    6. Alfo' Marco & Farcomeni Alessio & Tardella Luca, 2011. "A Three Component Latent Class Model for Robust Semiparametric Gene Discovery," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-19, January.
    7. Seo, Byungtae & Lindsay, Bruce G., 2010. "A computational strategy for doubly smoothed MLE exemplified in the normal mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1930-1941, August.
    8. Paul D. McNicholas, 2016. "Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 331-373, October.
    9. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    10. Utkarsh J. Dang & Antonio Punzo & Paul D. McNicholas & Salvatore Ingrassia & Ryan P. Browne, 2017. "Multivariate Response and Parsimony for Gaussian Cluster-Weighted Models," Journal of Classification, Springer;The Classification Society, vol. 34(1), pages 4-34, April.
    11. Chi, Eric C. & Lange, Kenneth, 2014. "Stable estimation of a covariance matrix guided by nuclear norm penalties," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 117-128.
    12. Volodymyr Melnykov, 2013. "Finite mixture modelling in mass spectrometry analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 573-592, August.
    13. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
    14. Lloyd-Jones, Luke R. & Nguyen, Hien D. & McLachlan, Geoffrey J., 2018. "A globally convergent algorithm for lasso-penalized mixture of linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 19-38.
    15. Hien Nguyen & Geoffrey McLachlan, 2015. "Maximum likelihood estimation of Gaussian mixture models without matrix operations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 371-394, December.
    16. Fritz, Heinrich & García-Escudero, Luis A. & Mayo-Iscar, Agustín, 2013. "A fast algorithm for robust constrained clustering," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 124-136.
    17. L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2014. "A constrained robust proposal for mixture modeling avoiding spurious solutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 27-43, March.

  5. Ingrassia, Salvatore, 1999. "Geometrical Aspects of Discrimination by Multilayer Perceptrons," Journal of Multivariate Analysis, Elsevier, vol. 68(2), pages 226-234, February.

    Cited by:

    1. Isabella Morlini, 2006. "On Multicollinearity and Concurvity in Some Nonlinear Multivariate Models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(1), pages 3-26, May.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (1) 2011-11-01
  2. NEP-URE: Urban & Real Estate Economics (1) 2011-11-01

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Salvatore Ingrassia should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.