IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v119y2018icp19-38.html
   My bibliography  Save this article

A globally convergent algorithm for lasso-penalized mixture of linear regression models

Author

Listed:
  • Lloyd-Jones, Luke R.
  • Nguyen, Hien D.
  • McLachlan, Geoffrey J.

Abstract

Variable selection is an old and pervasive problem in regression analysis. One solution is to impose a lasso penalty to shrink parameter estimates toward zero and perform continuous model selection. The lasso-penalized mixture of linear regressions model (L-MLR) is a class of regularization methods for the model selection problem in the fixed number of variables setting. A new algorithm is proposed for the maximum penalized-likelihood estimation of the L-MLR model. This algorithm is constructed via the minorization–maximization algorithm paradigm. Such a construction allows for coordinate-wise updates of the parameter components, and produces globally convergent sequences of estimates that generate monotonic sequences of penalized log-likelihood values. These three features are missing in the previously presented approximate expectation–maximization algorithms. The previous difficulty in producing a globally convergent algorithm for the maximum penalized-likelihood estimation of the L-MLR model is due to the intractability of finding exact updates for the mixture model mixing proportions in the maximization-step. This issue is resolved by showing that it can be converted into a simple numerical root finding problem that is proven to have a unique solution. The method is tested in simulation and with an application to Major League Baseball salary data from the 1990s and the present day, where the concept of whether player salaries are associated with batting performance is investigated.

Suggested Citation

  • Lloyd-Jones, Luke R. & Nguyen, Hien D. & McLachlan, Geoffrey J., 2018. "A globally convergent algorithm for lasso-penalized mixture of linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 19-38.
  • Handle: RePEc:eee:csdana:v:119:y:2018:i:c:p:19-38
    DOI: 10.1016/j.csda.2017.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317301962
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel T. Brown & Charles R. Link & Seth L. Rubin, 2017. "Moneyball After 10 Years," Journal of Sports Economics, , vol. 18(8), pages 771-786, December.
    2. De Veaux, Richard D., 1989. "Mixtures of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 8(3), pages 227-245, November.
    3. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
    4. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    5. Scully, Gerald W, 1974. "Pay and Performance in Major League Baseball," American Economic Review, American Economic Association, vol. 64(6), pages 915-930, December.
    6. Hien Nguyen & Geoffrey McLachlan, 2015. "Maximum likelihood estimation of Gaussian mixture models without matrix operations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 371-394, December.
    7. Abbas Khalili & Shili Lin, 2013. "Regularization in Finite Mixture of Regression Models with Diverging Number of Parameters," Biometrics, The International Biometric Society, vol. 69(2), pages 436-446, June.
    8. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    9. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    10. Gupta, Amar & Mishra, Ashish & Ripley, Michael, 2002. "Using Structural Analysis to Mediate XML Semantic Interoperability," Working papers 4345-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
    12. Thomas M. Fullerton & James T. Peach, 2016. "Major League Baseball 2015, What a Difference a Year Makes," Applied Economics Letters, Taylor & Francis Journals, vol. 23(18), pages 1289-1293, December.
    13. Ingrassia, Salvatore & Rocci, Roberto, 2007. "Constrained monotone EM algorithms for finite mixture of multivariate Gaussians," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5339-5351, July.
    14. Jahn K. Hakes & Raymond D. Sauer, 2006. "An Economic Evaluation of the Moneyball Hypothesis," Journal of Economic Perspectives, American Economic Association, vol. 20(3), pages 173-186, Summer.
    15. Grun, Bettina & Leisch, Friedrich, 2007. "Fitting finite mixtures of generalized linear regressions in R," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5247-5252, July.
    16. Khalili, Abbas & Chen, Jiahua, 2007. "Variable Selection in Finite Mixture of Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1025-1038, September.
    17. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    18. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Mengque & Zhang, Qingzhao & Fang, Kuangnan & Ma, Shuangge, 2020. "Structured analysis of the high-dimensional FMR model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuliano Galimberti & Gabriele Soffritti, 2020. "Seemingly unrelated clusterwise linear regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 235-260, June.
    2. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    3. Steven L. FULLERTON & James H. HOLCOMB & Thomas M. FULLERTON, 2017. "Any given season?," Journal of Economics and Political Economy, KSP Journals, vol. 4(3), pages 238-246, September.
    4. Fort, Rodney & Maxcy, Joel & Diehl, Mark, 2016. "Uncertainty by regulation: Rottenberg׳s invariance principle," Research in Economics, Elsevier, vol. 70(3), pages 454-467.
    5. Joshua M. Congdon-Hohman & Jonathan A. Lanning, 2018. "Beyond Moneyball," Journal of Sports Economics, , vol. 19(7), pages 1046-1061, October.
    6. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    7. Abbas Khalili & Farhad Shokoohi & Masoud Asgharian & Shili Lin, 2023. "Sparse estimation in semiparametric finite mixture of varying coefficient regression models," Biometrics, The International Biometric Society, vol. 79(4), pages 3445-3457, December.
    8. Ahonen, Ilmari & Nevalainen, Jaakko & Larocque, Denis, 2019. "Prediction with a flexible finite mixture-of-regressions," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 212-224.
    9. Jahn Hakes & Chad Turner, 2011. "Pay, productivity and aging in Major League Baseball," Journal of Productivity Analysis, Springer, vol. 35(1), pages 61-74, February.
    10. Djeutem, Edouard & Dunbar, Geoffrey R., 2022. "Uncovered return parity: Equity returns and currency returns," Journal of International Money and Finance, Elsevier, vol. 128(C).
    11. Yan Li & Chun Yu & Yize Zhao & Weixin Yao & Robert H. Aseltine & Kun Chen, 2022. "Pursuing sources of heterogeneity in modeling clustered population," Biometrics, The International Biometric Society, vol. 78(2), pages 716-729, June.
    12. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Maximum likelihood estimation of triangular and polygonal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 23-36.
    13. Xia, Xiaochao & Yang, Hu & Li, Jialiang, 2016. "Feature screening for generalized varying coefficient models with application to dichotomous responses," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 85-97.
    14. Gabriele Perrone & Gabriele Soffritti, 2023. "Seemingly unrelated clusterwise linear regression for contaminated data," Statistical Papers, Springer, vol. 64(3), pages 883-921, June.
    15. John Charles Bradbury, 2013. "What Is Right With Scully Estimates of a Player’s Marginal Revenue Product," Journal of Sports Economics, , vol. 14(1), pages 87-96, February.
    16. Jadrian J. Wooten & Dustin R. White, 2018. "An In-Class Experiment to Teach Marginal Revenue Product Using the Baseball Labor Market and Moneyball," Journal of Economics Teaching, Journal of Economics Teaching, vol. 3(1), pages 115-133, May.
    17. Pietro Coretto & Christian Hennig, 2016. "Robust Improper Maximum Likelihood: Tuning, Computation, and a Comparison With Other Methods for Robust Gaussian Clustering," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1648-1659, October.
    18. Rodney Fort & Young Hoon Lee & Taeyeon Oh, 2019. "Quantile Insights on Market Structure and Worker Salaries: The Case of Major League Baseball," Journal of Sports Economics, , vol. 20(8), pages 1066-1087, December.
    19. Martin Schmidt, 2011. "Institutional Change and Factor Movement in Major League Baseball: An Examination of the Coase Theorem’s Invariance Principle," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 39(3), pages 187-205, November.
    20. Reio Tanji, 2021. "Reference Dependence and Monetary Incentives: Evidence from Major League Baseball," Discussion Papers in Economics and Business 20-23, Osaka University, Graduate School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:119:y:2018:i:c:p:19-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.