IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v119y2018icp19-38.html
   My bibliography  Save this article

A globally convergent algorithm for lasso-penalized mixture of linear regression models

Author

Listed:
  • Lloyd-Jones, Luke R.
  • Nguyen, Hien D.
  • McLachlan, Geoffrey J.

Abstract

Variable selection is an old and pervasive problem in regression analysis. One solution is to impose a lasso penalty to shrink parameter estimates toward zero and perform continuous model selection. The lasso-penalized mixture of linear regressions model (L-MLR) is a class of regularization methods for the model selection problem in the fixed number of variables setting. A new algorithm is proposed for the maximum penalized-likelihood estimation of the L-MLR model. This algorithm is constructed via the minorization–maximization algorithm paradigm. Such a construction allows for coordinate-wise updates of the parameter components, and produces globally convergent sequences of estimates that generate monotonic sequences of penalized log-likelihood values. These three features are missing in the previously presented approximate expectation–maximization algorithms. The previous difficulty in producing a globally convergent algorithm for the maximum penalized-likelihood estimation of the L-MLR model is due to the intractability of finding exact updates for the mixture model mixing proportions in the maximization-step. This issue is resolved by showing that it can be converted into a simple numerical root finding problem that is proven to have a unique solution. The method is tested in simulation and with an application to Major League Baseball salary data from the 1990s and the present day, where the concept of whether player salaries are associated with batting performance is investigated.

Suggested Citation

  • Lloyd-Jones, Luke R. & Nguyen, Hien D. & McLachlan, Geoffrey J., 2018. "A globally convergent algorithm for lasso-penalized mixture of linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 19-38.
  • Handle: RePEc:eee:csdana:v:119:y:2018:i:c:p:19-38
    DOI: 10.1016/j.csda.2017.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317301962
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Daniel T. Brown & Charles R. Link & Seth L. Rubin, 2017. "Moneyball After 10 Years," Journal of Sports Economics, , vol. 18(8), pages 771-786, December.
    2. De Veaux, Richard D., 1989. "Mixtures of linear regressions," Computational Statistics & Data Analysis, Elsevier, vol. 8(3), pages 227-245, November.
    3. Nguyen, Hien D. & McLachlan, Geoffrey J., 2016. "Laplace mixture of linear experts," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 177-191.
    4. Giovanni Compiani & Yuichi Kitamura, 2016. "Using mixtures in econometric models: a brief review and some new results," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 95-127, October.
    5. Scully, Gerald W, 1974. "Pay and Performance in Major League Baseball," American Economic Review, American Economic Association, vol. 64(6), pages 915-930, December.
    6. Hien Nguyen & Geoffrey McLachlan, 2015. "Maximum likelihood estimation of Gaussian mixture models without matrix operations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 371-394, December.
    7. Abbas Khalili & Shili Lin, 2013. "Regularization in Finite Mixture of Regression Models with Diverging Number of Parameters," Biometrics, The International Biometric Society, vol. 69(2), pages 436-446, June.
    8. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    9. Wayne DeSarbo & William Cron, 1988. "A maximum likelihood methodology for clusterwise linear regression," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 249-282, September.
    10. Gupta, Amar & Mishra, Ashish & Ripley, Michael, 2002. "Using Structural Analysis to Mediate XML Semantic Interoperability," Working papers 4345-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    11. de Leeuw, Jan & Lange, Kenneth, 2009. "Sharp quadratic majorization in one dimension," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2471-2484, May.
    12. Thomas M. Fullerton & James T. Peach, 2016. "Major League Baseball 2015, What a Difference a Year Makes," Applied Economics Letters, Taylor & Francis Journals, vol. 23(18), pages 1289-1293, December.
    13. White, Halbert, 1983. "Corrigendum [Maximum Likelihood Estimation of Misspecified Models]," Econometrica, Econometric Society, vol. 51(2), pages 513-513, March.
    14. Ingrassia, Salvatore & Rocci, Roberto, 2007. "Constrained monotone EM algorithms for finite mixture of multivariate Gaussians," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5339-5351, July.
    15. Jahn K. Hakes & Raymond D. Sauer, 2006. "An Economic Evaluation of the Moneyball Hypothesis," Journal of Economic Perspectives, American Economic Association, vol. 20(3), pages 173-186, Summer.
    16. Grun, Bettina & Leisch, Friedrich, 2007. "Fitting finite mixtures of generalized linear regressions in R," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5247-5252, July.
    17. Khalili, Abbas & Chen, Jiahua, 2007. "Variable Selection in Finite Mixture of Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1025-1038, September.
    18. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    19. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Mengque & Zhang, Qingzhao & Fang, Kuangnan & Ma, Shuangge, 2020. "Structured analysis of the high-dimensional FMR model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshida, Takuma, 2018. "Semiparametric method for model structure discovery in additive regression models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 124-136.
    2. Xia, Xiaochao & Yang, Hu & Li, Jialiang, 2016. "Feature screening for generalized varying coefficient models with application to dichotomous responses," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 85-97.
    3. Giuliano Galimberti & Gabriele Soffritti, 2020. "Seemingly unrelated clusterwise linear regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 235-260, June.
    4. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    5. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    6. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    7. Fernando Rios-Avila & Gustavo J. Canavire-Bacarreza, 2017. "Standard Error Correction in Two-Stage Optimization Models: A Quasi-Maximum Likelihood Estimation Approach," Documentos de Trabajo de Valor Público 15659, Universidad EAFIT.
    8. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    9. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    10. Ayouz, Mourad K. & Remaud, Herve, 2003. "The Internationalization Determinants Of The Small Agro-Food Firms: Hypotheses And Statistical Tests," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 5(2), pages 1-27.
    11. Broze, Laurence & Gourieroux, Christian, 1998. "Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators," Journal of Econometrics, Elsevier, vol. 85(1), pages 75-98, July.
    12. Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
    13. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    15. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    16. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    17. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    18. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    19. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    20. Özlem Onaran & Engelbert Stockhammer, 2006. "The effect of FDI and foreign trade on wages in the Central and Eastern European Countries in the post-transition era: A sectoral analysis," Department of Economics Working Papers wuwp094, Vienna University of Economics and Business, Department of Economics.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:119:y:2018:i:c:p:19-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.