IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i8p1930-1941.html
   My bibliography  Save this article

A computational strategy for doubly smoothed MLE exemplified in the normal mixture model

Author

Listed:
  • Seo, Byungtae
  • Lindsay, Bruce G.

Abstract

A typical problem for the parameter estimation in normal mixture models is an unbounded likelihood and the presence of many spurious local maxima. To resolve this problem, we apply the doubly smoothed maximum likelihood estimator (DS-MLE) proposed by Seo and Lindsay (in preparation). We discuss the computational issues of the DS-MLE and propose a simulation-based DS-MLE using Monte Carlo methods as a general computational tool. Simulation results show that the DS-MLE is virtually consistent for any bandwidth choice. Moreover, the parameter estimates in the DS-MLE are quite robust to the choice of bandwidths, as the theory indicates. A new method for the bandwidth selection is also proposed.

Suggested Citation

  • Seo, Byungtae & Lindsay, Bruce G., 2010. "A computational strategy for doubly smoothed MLE exemplified in the normal mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1930-1941, August.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1930-1941
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00092-7
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Jiahua & Tan, Xianming, 2009. "Inference for multivariate normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1367-1383, August.
    2. Gabriela Ciuperca & Andrea Ridolfi & Jérome Idier, 2003. "Penalized Maximum Likelihood Estimator for Normal Mixtures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 45-59.
    3. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    4. Ingrassia, Salvatore & Rocci, Roberto, 2007. "Constrained monotone EM algorithms for finite mixture of multivariate Gaussians," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5339-5351, July.
    5. D. Böhning, 1986. "A vertex-exchange-method in D-optimal design theory," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 33(1), pages 337-347, December.
    6. repec:dau:papers:123456789/6069 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Daeyoung & Seo, Byungtae, 2014. "Assessment of the number of components in Gaussian mixture models in the presence of multiple local maximizers," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 100-120.
    2. Seo, Byungtae & Kim, Daeyoung, 2012. "Root selection in normal mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2454-2470.
    3. Hampel, Frank & Hennig, Christian & Ronchetti, Elvezio, 2011. "A smoothing principle for the Huber and other location M-estimators," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 324-337, January.
    4. Seo, Byungtae, 2017. "The doubly smoothed maximum likelihood estimation for location-shifted semiparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 27-39.
    5. Ingrassia, Salvatore & Rocci, Roberto, 2011. "Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1715-1725, April.
    6. Chee, Chew-Seng & Wang, Yong, 2013. "Minimum quadratic distance density estimation using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1930-1941. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.