IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Minimum quadratic distance density estimation using nonparametric mixtures

Listed author(s):
  • Chee, Chew-Seng
  • Wang, Yong
Registered author(s):

    Quadratic loss is predominantly used in the literature as the performance measure for nonparametric density estimation, while nonparametric mixture models have been studied and estimated almost exclusively via the maximum likelihood approach. In this paper, we relate both for estimating a nonparametric density function. Specifically, we consider nonparametric estimation of a mixing distribution by minimizing the quadratic distance between the empirical and the mixture distribution, both being smoothed by kernel functions, a technique known as double smoothing. Experimental studies show that the new mixture-based density estimators outperform the popular kernel-based density estimators in terms of mean integrated squared error for practically all the distributions that we studied, thanks to the substantial bias reduction provided by nonparametric mixture models and double smoothing.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 57 (2013)
    Issue (Month): 1 ()
    Pages: 1-16

    in new window

    Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:1-16
    DOI: 10.1016/j.csda.2012.06.004
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Seo, Byungtae & Lindsay, Bruce G., 2010. "A computational strategy for doubly smoothed MLE exemplified in the normal mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1930-1941, August.
    2. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    3. Cao, Ricardo & Cuevas, Antonio & Fraiman, Ricardo, 1995. "Minimum distance density-based estimation," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 611-631, December.
    4. Fadoua Balabdaoui & Jon A. Wellner, 2010. "Estimation of a "k"-monotone density: characterizations, consistency and minimax lower bounds," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 45-70.
    5. Yong Wang, 2007. "On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 185-198.
    6. Jones, M.C. & Henderson, D.A., 2009. "Maximum likelihood kernel density estimation: On the potential of convolution sieves," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3726-3733, August.
    7. repec:dau:papers:123456789/4650 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:1-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.