IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v86y2024i1d10.1007_s13571-024-00324-0.html
   My bibliography  Save this article

Robust Statistical Modeling of Monthly Rainfall: The Minimum Density Power Divergence Approach

Author

Listed:
  • Arnab Hazra

    (Indian Institute of Technology Kanpur)

  • Abhik Ghosh

    (Indian Statistical Institute)

Abstract

Statistical modeling of monthly, seasonal, or annual rainfall data is an important research area in meteorology. These models play a crucial role in rainfed agriculture, where a proper assessment of the future availability of rainwater is necessary. The rainfall amount during a rainy month or a whole rainy season can take any positive value and some simple (one or two-parameter) probability models supported over the positive real line that are generally used for rainfall modeling are exponential, gamma, Weibull, lognormal, Pearson Type-V/VI, log-logistic, etc., where the unknown model parameters are routinely estimated using the maximum likelihood estimator (MLE). However, the presence of outliers or extreme observations is a common issue in rainfall data and the MLEs being highly sensitive to them often leads to spurious inference. Here, we discuss a robust parameter estimation approach based on the minimum density power divergence estimator (MDPDE). We fit the above four parametric models to the detrended areally-weighted monthly rainfall data from the 36 meteorological subdivisions of India for the years 1951-2014 and compare the fits based on MLE and the proposed ‘optimum’ MDPDE; the superior performance of MDPDE is showcased for several cases. For all month-subdivision combinations, we discuss the best-fit models and median rainfall amounts.

Suggested Citation

  • Arnab Hazra & Abhik Ghosh, 2024. "Robust Statistical Modeling of Monthly Rainfall: The Minimum Density Power Divergence Approach," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(1), pages 241-279, May.
  • Handle: RePEc:spr:sankhb:v:86:y:2024:i:1:d:10.1007_s13571-024-00324-0
    DOI: 10.1007/s13571-024-00324-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-024-00324-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-024-00324-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdullah Al Mamoon & Ataur Rahman, 2017. "Selection of the best fit probability distribution in rainfall frequency analysis for Qatar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 281-296, March.
    2. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    3. Adham, Ammar & Wesseling, Jan G. & Riksen, Michel & Ouessar, Mohamed & Ritsema, Coen J., 2016. "A water harvesting model for optimizing rainwater harvesting in the wadi Oum Zessar watershed, Tunisia," Agricultural Water Management, Elsevier, vol. 176(C), pages 191-202.
    4. K. Krishnamoorthy & Luis León‐Novelo, 2014. "Small sample inference for gamma parameters: one‐sample and two‐sample problems," Environmetrics, John Wiley & Sons, Ltd., vol. 25(2), pages 107-126, March.
    5. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    6. Sharda, V.N. & Das, P.K., 2005. "Modelling weekly rainfall data for crop planning in a sub-humid climate of India," Agricultural Water Management, Elsevier, vol. 76(2), pages 120-138, August.
    7. Neykov, N. & Filzmoser, P. & Dimova, R. & Neytchev, P., 2007. "Robust fitting of mixtures using the trimmed likelihood estimator," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 299-308, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Greco, 2022. "Robust fitting of mixtures of GLMs by weighted likelihood," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 25-48, March.
    2. Luca Greco & Antonio Lucadamo & Claudio Agostinelli, 2021. "Weighted likelihood latent class linear regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 711-746, June.
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    4. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    5. Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
    6. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    7. Warshaw, Evan, 2020. "Asymmetric volatility spillover between European equity and foreign exchange markets: Evidence from the frequency domain," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 1-14.
    8. L. García-Escudero & A. Gordaliza & A. Mayo-Iscar, 2013. "Comments on: model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 459-461, November.
    9. Vincenzo Verardi, 2013. "Semiparametric regression in Stata," United Kingdom Stata Users' Group Meetings 2013 14, Stata Users Group.
    10. Marco Riani & Anthony C. Atkinson & Aldo Corbellini, 2023. "Automatic robust Box–Cox and extended Yeo–Johnson transformations in regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 75-102, March.
    11. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    12. Fortini Marco, 2020. "An Improved Fellegi-Sunter Framework for Probabilistic Record Linkage Between Large Data Sets," Journal of Official Statistics, Sciendo, vol. 36(4), pages 803-825, December.
    13. Pietro Coretto & Christian Hennig, 2010. "A simulation study to compare robust clustering methods based on mixtures," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 111-135, September.
    14. Finger, Robert, 2012. "Biases in Farm-Level Yield Risk Analysis due to Data Aggregation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(01), pages 1-14, February.
    15. Shirin Enshaeifar & Ahmed Zoha & Andreas Markides & Severin Skillman & Sahr Thomas Acton & Tarek Elsaleh & Masoud Hassanpour & Alireza Ahrabian & Mark Kenny & Stuart Klein & Helen Rostill & Ramin Nilf, 2018. "Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    16. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    17. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    18. Meng Li & Sijia Xiang & Weixin Yao, 2016. "Robust estimation of the number of components for mixtures of linear regression models," Computational Statistics, Springer, vol. 31(4), pages 1539-1555, December.
    19. Václav Plevka & Pieter Segaert & Chris M. J. Tampère & Mia Hubert, 2016. "Analysis of travel activity determinants using robust statistics," Transportation, Springer, vol. 43(6), pages 979-996, November.
    20. Chalabi, Yohan / Y. & Wuertz, Diethelm, 2010. "Weighted trimmed likelihood estimator for GARCH models," MPRA Paper 26536, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:86:y:2024:i:1:d:10.1007_s13571-024-00324-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.