IDEAS home Printed from https://ideas.repec.org/b/wfo/wstudy/41748.html
   My bibliography  Save this book

A Modeling Framework for the Analysis of Biomass Production in a Land Constrained Economy. The Example of Austria

Author

Listed:
  • Bernhard Stürmer

    (Austrian Institute of Economic Research)

  • Johannes Schmidt
  • Erwin Schmid

    (University of Natural Resources and Applied Life Sciences, Vienna, Institute for Sustainable Economic Development)

  • Franz Sinabell

Abstract

Ambitious renewable energy targets have been implemented in the EU that can only be attained if further measures are taken to boost biomass production for energy uses on agricultural land. The aim of this discussion paper is to explore consequences for land use and environment if biomass production will be expanded for non-food purposes in Austria. We assess the bio-physical and economic production potentials of energy crops and explore the trade-offs between bioenergy and food production on arable lands in Austria. In a policy experiment, we analyse how costly it is to expand domestic non-food biomass production by employing an integrated modelling framework using an elaborated set of bio-physical and economic data. The results indicate that an expansion of biomass production for first and second generation biofuels would imply significant adjustment costs for the agricultural sector. Furthermore, increasing feedstock production would have significant impacts on land use and fertiliser intensity levels. The economic analysis considers differences of regions and site conditions, which lead to higher opportunity costs, and hence, higher feedstock costs as assumed in previous studies. Subsidising domestic biomass production likely leads to rising regional food and feed prices as well as factor prices (e.g., land renting) in a land constrained economy.

Suggested Citation

  • Bernhard Stürmer & Johannes Schmidt & Erwin Schmid & Franz Sinabell, 2011. "A Modeling Framework for the Analysis of Biomass Production in a Land Constrained Economy. The Example of Austria," WIFO Studies, WIFO, number 41748, April.
  • Handle: RePEc:wfo:wstudy:41748
    as

    Download full text from publisher

    File URL: https://www.wifo.ac.at/wwa/pubid/41748
    File Function: abstract
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.
    2. Suurs, Roald A.A. & Hekkert, Marko P., 2009. "Competition between first and second generation technologies: Lessons from the formation of a biofuels innovation system in the Netherlands," Energy, Elsevier, vol. 34(5), pages 669-679.
    3. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    4. Strauss, Franziska & Formayer, Herbert & Asamer, Veronika & Schmid, Erwin, 2010. "Climate change data for Austria and the period 2008-2040 with one day and km2 resolution," Discussion Papers DP-48-2010, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    5. Breuer, Thomas & Holm-Muller, Karin, 2007. "Abschätzung der Wertschöpfungspotenziale im ländlichen Raum durch Biokraftstoffe am Beispiel Nordrhein-Westfalens," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 56(5/6).
    6. repec:zbw:inwedp:482010 is not listed on IDEAS
    7. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    8. Breuer, Thomas & Holm-Muller, Karin, 2007. "Abschätzung der Wertschöpfungspotenziale im ländlichen Raum durch Biokraftstoffe am Beispiel Nordrhein-Westfalens," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 56(05-06), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zbw:inwedp:512011 is not listed on IDEAS
    2. Bernhard Stürmer & Johannes Schmidt & Erwin Schmid & Franz Sinabell, 2011. "A Modeling Framework for the Analysis of Biomass Production in a Land Constrained Economy. The Example of Austria," WIFO Studies, WIFO, number 41748, December.
    3. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    4. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    5. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    6. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    7. Spinelli, D. & Jez, S. & Pogni, R. & Basosi, R., 2013. "Environmental and life cycle analysis of a biodiesel production line from sunflower in the Province of Siena (Italy)," Energy Policy, Elsevier, vol. 59(C), pages 492-506.
    8. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2017. "Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1131-1146.
    9. Liu, Tingting & McConkey, Brian & Huffman, Ted & Smith, Stephen & MacGregor, Bob & Yemshanov, Denys & Kulshreshtha, Suren, 2014. "Potential and impacts of renewable energy production from agricultural biomass in Canada," Applied Energy, Elsevier, vol. 130(C), pages 222-229.
    10. Holland, Robert A. & Scott, Kate & Hinton, Emma D. & Austen, Melanie C. & Barrett, John & Beaumont, Nicola & Blaber-Wegg, Tina & Brown, Gareth & Carter-Silk, Eleanor & Cazenave, Pierre & Eigenbrod, Fe, 2016. "Bridging the gap between energy and the environment," Energy Policy, Elsevier, vol. 92(C), pages 181-189.
    11. Janda, Karel & Kristoufek, Ladislav & Zilberman, David, "undated". "Biofuels: review of policies and impacts," CUDARE Working Papers 120415, University of California, Berkeley, Department of Agricultural and Resource Economics.
    12. Zahra Echresh Zadeh & Ali Abdulkhani & Basudeb Saha, 2020. "Characterization of Fast Pyrolysis Bio-Oil from Hardwood and Softwood Lignin," Energies, MDPI, vol. 13(4), pages 1-14, February.
    13. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    14. Forsell, Nicklas & Guerassimoff, Gilles & Athanassiadis, Dimitris & Thivolle-Casat, Alain & Lorne, Daphné & Millet, Guy & Assoumou, Edi, 2013. "Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France," Renewable Energy, Elsevier, vol. 60(C), pages 415-426.
    15. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    16. Holland, R.A. & Eigenbrod, F. & Muggeridge, A. & Brown, G. & Clarke, D. & Taylor, G., 2015. "A synthesis of the ecosystem services impact of second generation bioenergy crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 30-40.
    17. Pandiyan, K. & Singh, Arjun & Singh, Surender & Saxena, Anil Kumar & Nain, Lata, 2019. "Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production," Renewable Energy, Elsevier, vol. 132(C), pages 723-741.
    18. Jianliang Wang & Yuru Yang & Yongmei Bentley & Xu Geng & Xiaojie Liu, 2018. "Sustainability Assessment of Bioenergy from a Global Perspective: A Review," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    19. Bardhan, Soubhik K. & Gupta, Shelaka & Gorman, M.E. & Haider, M. Ali, 2015. "Biorenewable chemicals: Feedstocks, technologies and the conflict with food production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 506-520.
    20. Ramírez Triana, Carlos Ariel, 2011. "Energetics of Brazilian ethanol: Comparison between assessment approaches," Energy Policy, Elsevier, vol. 39(8), pages 4605-4613, August.
    21. Astrid E. Bout & Swinda F. Pfau & Erwin van der Krabben & Ben Dankbaar, 2019. "Residual Biomass from Dutch Riverine Areas—From Waste to Ecosystem Service," Sustainability, MDPI, vol. 11(2), pages 1-14, January.

    More about this item

    JEL classification:

    • Q1 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wfo:wstudy:41748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Florian Mayr (email available below). General contact details of provider: https://edirc.repec.org/data/wifooat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.