IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Aproksymacja liczb rozmytych zachowujaca entropijna miare niespecyficznosci

Listed author(s):
  • Heilpern St.
Registered author(s):

    Zbiory rozmyte okazaly sie bardzo pomocne w modelowaniu i efektywnym przetwarzaniu nieprecyzyjnych informacji. Czasem zachodzi jednak koniecznosc przyblizenia danego zbioru rozmytego za pomoca zbioru nierozmytego. W tym celu stosuje sie zazwyczaj defuzyfikacje (wyostrzanie), ale metoda ta niestety czesto prowadzi do utraty zbyt wielu cennych informacji. W tym przypadku wskazane byc moze posluzenie sie aproksymacja przedzialowa. W niniejszej pracy ograniczymy sie do najwazniejszej podrodziny zbiorow rozmytych, tzn. do liczb rozmytych. Dla wspomnianej rodziny przedstawiono nowa metode aproksymacji przedzialowej, zachowujaca ilosc informacji, jaka dostarcza przyblizana liczba rozmyta. Dokladniej, wprowadzona zostanie pewna miara informacji, zwana entropijna miara niespecyficznosci, a nastepnie wskazana zostanie metoda aproksymacji przedzialowej liczb rozmytych, zachowujaca te miare informacji.

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Article provided by Wroclaw University of Technology, Institute of Organization and Management in its journal Operations Research and Decisions.

    Volume (Year): 4 (2003)
    Issue (Month): ()
    Pages: 1-6

    in new window

    Handle: RePEc:wut:journl:v:4:y:2003:p:6
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:4:y:2003:p:6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Piotr Wawrzynowski)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.