Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model
Author
Abstract
Suggested Citation
DOI: 10.1142/S0219024916500278
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Florence Guillaume, 2013. "The αVG model for multivariate asset pricing: calibration and extension," Review of Derivatives Research, Springer, vol. 16(1), pages 25-52, April.
- Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0501, December.
- Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Mitov, Ivan & Fabozzi, Frank J., 2011.
"Time series analysis for financial market meltdowns,"
Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1879-1891, August.
- Young Shin Kim & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Mitov, Ivan & Fabozzi, Frank J., 2010. "Time series analysis for financial market meltdowns," Working Paper Series in Economics 2, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Gian Luca Tassinari & Michele Leonardo Bianchi, 2014. "Calibrating The Smile With Multivariate Time-Changed Brownian Motion And The Esscher Transform," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-34.
- Young Kim & Rosella Giacometti & Svetlozar Rachev & Frank Fabozzi & Domenico Mignacca, 2012.
"Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model,"
Annals of Operations Research, Springer, vol. 201(1), pages 325-343, December.
- Kim, Young Shin & Giacometti, Rosella & Rachev, Svetlozar T. & Fabozzi, Frank J. & Mignacca, Domenico, 2012. "Measuring financial risk and portfolio optimization with a non-Gaussian multivariate model," Working Paper Series in Economics 44, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Svetlana I. Boyarchenko & Sergei Z. Levendorskiǐ, 2000. "Option Pricing For Truncated Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 549-552.
- Acerbi, Carlo & Tasche, Dirk, 2002.
"On the coherence of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
- Carlo Acerbi & Dirk Tasche, 2001. "On the coherence of Expected Shortfall," Papers cond-mat/0104295, arXiv.org, revised May 2002.
- Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
- Suzanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What Is the Best Risk Measure in Practice? A Comparison of Standard Measures," Working Papers hal-00921283, HAL.
- Yves Dominicy & Hiroaki Ogata & David Veredas, 2013.
"Inference for vast dimensional elliptical distributions,"
Computational Statistics, Springer, vol. 28(4), pages 1853-1880, August.
- Yves Dominicy & Hiroaki Ogata & David Veredas, 2013. "Inference for vast dimensional elliptical distributions," ULB Institutional Repository 2013/136282, ULB -- Universite Libre de Bruxelles.
- Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
- Rosinski, Jan, 2007. "Tempering stable processes," Stochastic Processes and their Applications, Elsevier, vol. 117(6), pages 677-707, June.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Sergei Levendorskiĭ, 2012. "Efficient Pricing And Reliable Calibration In The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(07), pages 1-44.
- Sebastian Kring & Svetlozar T. Rachev & Markus Höchstötter & Frank J. Fabozzi & Michele Leonardo Bianchi, 2009. "Multi-tail generalized elliptical distributions for asset returns," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 272-291, July.
- Wenbo Hu & Alec Kercheval, 2010. "Portfolio optimization for student t and skewed t returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 91-105.
- Simon A. Broda & Marc S. Paolella, 2009.
"CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation,"
Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 412-436, Fall.
- Simon A. BRODA & Marc S. PAOLELLA, 2008. "CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation," Swiss Finance Institute Research Paper Series 08-08, Swiss Finance Institute.
- repec:hal:journl:hal-00921283 is not listed on IDEAS
- Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
- Matthias Scherer & Svetlozar T. Rachev & Young Shin Kim & Frank J. Fabozzi, 2012. "Approximation of skewed and leptokurtic return distributions," Applied Financial Economics, Taylor & Francis Journals, vol. 22(16), pages 1305-1316, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cheng Peng & Young Shin Kim & Stefan Mittnik, 2022.
"Portfolio Optimization on Multivariate Regime-Switching GARCH Model with Normal Tempered Stable Innovation,"
JRFM, MDPI, vol. 15(5), pages 1-23, May.
- Cheng Peng & Young Shin Kim & Stefan Mittnik, 2020. "Portfolio Optimization on Multivariate Regime Switching GARCH Model with Normal Tempered Stable Innovation," Papers 2009.11367, arXiv.org, revised Feb 2023.
- Michele Leonardo Bianchi & Giovanni De Luca & Giorgia Rivieccio, 2020. "CoVaR with volatility clustering, heavy tails and non-linear dependence," Papers 2009.10764, arXiv.org.
- Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Sensitivity analysis of Mixed Tempered Stable parameters with implications in portfolio optimization," Computational Management Science, Springer, vol. 16(1), pages 71-95, February.
- Young Shin Kim, 2022. "Portfolio optimization and marginal contribution to risk on multivariate normal tempered stable model," Annals of Operations Research, Springer, vol. 312(2), pages 853-881, May.
- Michele Leonardo Bianchi & Gian Luca Tassinari, 2018. "Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform," Papers 1805.05584, arXiv.org, revised May 2018.
- Michele Leonardo Bianchi & Alberto Maria Sorrentino, 2020. "Measuring CoVaR: An Empirical Comparison," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 511-528, February.
- Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
- Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2019. "Regime switching dynamic correlations for asymmetric and fat-tailed conditional returns," Journal of Econometrics, Elsevier, vol. 213(2), pages 493-515.
- Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
- Asmerilda Hitaj & Friedrich Hubalek & Lorenzo Mercuri & Edit Rroji, 2016. "Multivariate Mixed Tempered Stable Distribution," Papers 1609.00926, arXiv.org, revised Oct 2016.
- Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
- Bianchi, Michele Leonardo & De Luca, Giovanni & Rivieccio, Giorgia, 2023. "Non-Gaussian models for CoVaR estimation," International Journal of Forecasting, Elsevier, vol. 39(1), pages 391-404.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Slim, Skander & Koubaa, Yosra & BenSaïda, Ahmed, 2017. "Value-at-Risk under Lévy GARCH models: Evidence from global stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 30-53.
- Michele Leonardo Bianchi & Gian Luca Tassinari, 2018. "Forward-looking portfolio selection with multivariate non-Gaussian models and the Esscher transform," Papers 1805.05584, arXiv.org, revised May 2018.
- Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
- Sander Barendse & Erik Kole & Dick van Dijk, 2023.
"Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 528-568.
- Sander Barendse & Erik Kole & Dick van Dijk, 2019. "Backtesting Value-at-Risk and Expected Shortfall in the Presence of Estimation Error," Tinbergen Institute Discussion Papers 19-058/III, Tinbergen Institute.
- Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
- Michele Leonardo Bianchi & Asmerilda Hitaj & Gian Luca Tassinari, 2020. "Multivariate non-Gaussian models for financial applications," Papers 2005.06390, arXiv.org.
- Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
- Fantazzini, Dean & Shangina, Tamara, 2019.
"The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
- Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," MPRA Paper 95992, University Library of Munich, Germany.
- Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2022.
"Next generation models for portfolio risk management: An approach using financial big data,"
Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(3), pages 765-787, September.
- Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2021. "Next Generation Models for Portfolio Risk Management: An Approach Using Financial Big Data," Papers 2102.12783, arXiv.org, revised Feb 2022.
- Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
- Hasan A. Fallahgoul & David Veredas & Frank J. Fabozzi, 2019. "Quantile-Based Inference for Tempered Stable Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 51-83, January.
- Argyropoulos, Christos & Panopoulou, Ekaterini, 2019. "Backtesting VaR and ES under the magnifying glass," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 22-37.
- Bianchi, Michele Leonardo & De Luca, Giovanni & Rivieccio, Giorgia, 2023. "Non-Gaussian models for CoVaR estimation," International Journal of Forecasting, Elsevier, vol. 39(1), pages 391-404.
- Abhinav Anand & Tiantian Li & Tetsuo Kurosaki & Young Shin Kim, 2017. "The equity risk posed by the too-big-to-fail banks: a Foster–Hart estimation," Annals of Operations Research, Springer, vol. 253(1), pages 21-41, June.
- Michele Leonardo Bianchi & Giovanni De Luca & Giorgia Rivieccio, 2020. "CoVaR with volatility clustering, heavy tails and non-linear dependence," Papers 2009.10764, arXiv.org.
- Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018.
"Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
- Marie Kratz & Yen H. Lok & Alexander J McNeil, 2016. "Multinomial VaR Backtests: A simple implicit approach to backtesting expected shortfall," Papers 1611.04851, arXiv.org.
- Lazar, Emese & Zhang, Ning, 2019.
"Model risk of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 105(C), pages 74-93.
- Emese Lazar & Ning Zhang, 2017. "Model Risk of Expected Shortfall," ICMA Centre Discussion Papers in Finance icma-dp2017-10, Henley Business School, University of Reading.
- Peña, Juan Ignacio & Rodríguez, Rosa & Mayoral, Silvia, 2020. "Tail risk of electricity futures," Energy Economics, Elsevier, vol. 91(C).
- Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020.
"Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary,"
Papers
2009.07341, arXiv.org.
- Dimitriadis, Timo & Liu, Xiaochun & Schnaitmann, Julie, 2020. "Encompassing tests for value at risk and expected shortfall multi-step forecasts based on inference on the boundary," Hohenheim Discussion Papers in Business, Economics and Social Sciences 11-2020, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
- Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
More about this item
Keywords
Normal mean-variance mixture; time-changed Brownian motion; multivariate non-Gaussian processes; expectation–maximization maximum likelihood; volatility clustering; portfolio risk measures;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:19:y:2016:i:04:n:s0219024916500278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.