IDEAS home Printed from
   My bibliography  Save this article

Multi-tail generalized elliptical distributions for asset returns


  • Sebastian Kring
  • Svetlozar T. Rachev
  • Markus Höchstötter
  • Frank J. Fabozzi
  • Michele Leonardo Bianchi


In the study of asset returns, the preponderance of empirical evidence finds that return distributions are not normally distributed. Despite this evidence, non-normal multivariate modelling of asset returns does not appear to play an important role in asset management or risk management because of the complexity of estimating multivariate non-normal distributions from market return data. In this paper, we present a new subclass of generalized elliptical distributions for asset returns that is sufficiently user friendly, so that it can be utilized by asset managers and risk managers for modelling multivariate non-normal distributions of asset returns. For the distribution we present, which we call the multi-tail generalized elliptical distribution, we (1) derive the densities using results of the theory of generalized elliptical distributions and (2) introduce a function, which we label the tail function, to describe their tail behaviour. We test the model on German stock returns and find that (1) the multi-tail model introduced in the paper significantly outperforms the classical elliptical model and (2) the hypothesis of homogeneous tail behaviour can be rejected. Copyright © 2009 The Author(s). Journal compilation © Royal Economic Society 2009

Suggested Citation

  • Sebastian Kring & Svetlozar T. Rachev & Markus Höchstötter & Frank J. Fabozzi & Michele Leonardo Bianchi, 2009. "Multi-tail generalized elliptical distributions for asset returns," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 272-291, July.
  • Handle: RePEc:ect:emjrnl:v:12:y:2009:i:2:p:272-291

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Frahm, Gabriel & Jaekel, Uwe, 2010. "A generalization of Tyler's M-estimators to the case of incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 374-393, February.
    2. Michele Leonardo Bianchi & Gian Luca Tassinari & Frank J. Fabozzi, 2016. "Riding With The Four Horsemen And The Multivariate Normal Tempered Stable Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-28, June.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:12:y:2009:i:2:p:272-291. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.