IDEAS home Printed from https://ideas.repec.org/a/wsi/igtrxx/v20y2018i02ns0219198917500347.html
   My bibliography  Save this article

Games with Symmetric Incomplete Information and Asymmetric Computational Resources

Author

Listed:
  • Misha Gavrilovich

    (National Research University Higher School of Economics, 3 Kantemirovskaya st., St. Petersburg, Russia2St. Petersburg Institute for Economics and Mathematics, RAS, 38 Serpuhovskaya st., St. Petersburg, Russia)

  • Victoria Kreps

    (National Research University Higher School of Economics, 3 Kantemirovskaya st., St. Petersburg, Russia2St. Petersburg Institute for Economics and Mathematics, RAS, 38 Serpuhovskaya st., St. Petersburg, Russia)

Abstract

We consider random public signals on the state of two-person zero-sum game with incomplete information on both sides (both players do not know the state of the game). To learn the state, each player chooses a finite automaton which receives the public signal; the player only sees the output of the automaton chosen. Supposing that the size of automata available to Player 1 is essentially bigger than that available to Player 2, we give an example of public signal with random length of output strings where the posterior belief of Player 1 is the state and the posterior belief of Player 2 is close to his original belief. Thus, we demonstrate that asymmetric information about the state of a game may appear not only due to a private signal but as a result of a public signal and asymmetric computational resources of players.Besides, for a class of random signals with fixed length of output strings, we estimate the fraction of signals such that some automaton of given size may help Player 2 to significantly reestimate prior probability of the state. We show that this fraction is negligible if the size of automata of Player 2 is sufficiently smaller than length of output strings.

Suggested Citation

  • Misha Gavrilovich & Victoria Kreps, 2018. "Games with Symmetric Incomplete Information and Asymmetric Computational Resources," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-16, June.
  • Handle: RePEc:wsi:igtrxx:v:20:y:2018:i:02:n:s0219198917500347
    DOI: 10.1142/S0219198917500347
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219198917500347
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219198917500347?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Aumann, 1995. "Repeated Games with Incomplete Information," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262011476, December.
    2. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    3. Abraham Neyman, 1998. "Finitely Repeated Games with Finite Automata," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 513-552, August.
    4. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-1281, November.
    5. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    6. John C. Harsanyi, 1967. "Games with Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model," Management Science, INFORMS, vol. 14(3), pages 159-182, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Bogomolnaia & Misha Gavrilovich & Egor Ianovski & Galina Lyapunova & Hervé Moulin & Alexander Nesterov & Marina Sandomirskaia & Fedor Sandomirskiy & Elena Yanovskaya, 2021. "In memory of Victoria Kreps (3 September 1945–3 March 2021)," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(3), pages 597-601, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beal, Sylvain & Querou, Nicolas, 2007. "Bounded rationality and repeated network formation," Mathematical Social Sciences, Elsevier, vol. 54(1), pages 71-89, July.
    2. Compte, Olivier & Postlewaite, Andrew, 2015. "Plausible cooperation," Games and Economic Behavior, Elsevier, vol. 91(C), pages 45-59.
    3. Monte, Daniel, 2013. "Bounded memory and permanent reputations," Journal of Mathematical Economics, Elsevier, vol. 49(5), pages 345-354.
    4. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    5. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    6. Wichardt, Philipp C., 2010. "Modelling equilibrium play as governed by analogy and limited foresight," Games and Economic Behavior, Elsevier, vol. 70(2), pages 472-487, November.
    7. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    8. O. V. Baskov, 2019. "Equilibrium payoffs in repeated two-player zero-sum games of finite automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 423-431, June.
    9. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    10. Jérôme Renault & Marco Scarsini & Tristan Tomala, 2007. "A Minority Game with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 873-889, November.
    11. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    12. David Baron & Ehud Kalai, 1990. "Dividing a Cake by Majority: The Simplest Equilibria," Discussion Papers 919, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    13. Tracy Xiao Liu & Jenna Bednar & Yan Chen & Scott Page, 2019. "Directional behavioral spillover and cognitive load effects in multiple repeated games," Experimental Economics, Springer;Economic Science Association, vol. 22(3), pages 705-734, September.
    14. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    15. Samuelson, Larry & Swinkels, Jeroen M., 2003. "Evolutionary stability and lexicographic preferences," Games and Economic Behavior, Elsevier, vol. 44(2), pages 332-342, August.
    16. Olivier Compte & Andrew Postlewaite, 2007. "Effecting Cooperation," PIER Working Paper Archive 09-019, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 29 May 2009.
    17. Rubinstein, A. & Wolnsky, A., 1992. "A Rermark on Infinitely Repeated Extensive Games," Papers 4-92, Tel Aviv - the Sackler Institute of Economic Studies.
    18. O. Gossner, 2000. "Sharing a long secret in a few public words," THEMA Working Papers 2000-15, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    19. GOSSNER, Olivier, 1998. "Repeated games played by cryptographically sophisticated players," LIDAM Discussion Papers CORE 1998035, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Hamid Sabourian & Jihong Lee, 2004. "Complexity and Efficiency in Repeated Games with Negotiation," Econometric Society 2004 Far Eastern Meetings 401, Econometric Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:igtrxx:v:20:y:2018:i:02:n:s0219198917500347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/igtr/igtr.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.