IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v36y2019i01ns0217595919500088.html
   My bibliography  Save this article

Push or Pull? Perishable Products with Freshness-Keeping Effort

Author

Listed:
  • Lianmin Zhang

    (School of Management and Engineering, Nanjing University, Nanjing, P. R. China)

  • Lei Guan

    (School of Management and Economics, Beijing Institute of Technology, Beijing, P. R. China)

  • Yong-Hong Kuo

    (Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong, P. R. China)

  • Houcai Shen

    (School of Management and Engineering, Nanjing University, Nanjing, P. R. China)

Abstract

With the gradual improvement of living standards, people’s consumption levels and habits are changing. One notable fact is that the demand for fresh products is growing steadily. Accordingly, fresh-product preservation and logistics distribution also require higher standards. Based on the practice of fresh domestic transport and preservation, for which the producer and the distributor are responsible, this paper discusses their optimal decisions taking into account the freshness-keeping effort of the distributor. Our main contributions include the derivations of the optimal decisions of the order quantity and the freshness-keeping effort in both the pull and push models, which are common in practice but have not been studied in the literature. Our analytical models lead to the result that, all other settings being the same, the distributor always puts a greater effort into preserving the product quality in the pull model than in the push model. This phenomenon results in a greater distributor’s order quantity and producer’s shipping quantity in the pull model. We also conduct a comprehensive numerical comparison of the effects of different modulating factors, including the price and the proportion and variation of surviving quantity, in these two settings. We find that the profits of the participants and the supply chain are always larger in the pull model, which indicates that the pull model is a better choice for the supply chain.

Suggested Citation

  • Lianmin Zhang & Lei Guan & Yong-Hong Kuo & Houcai Shen, 2019. "Push or Pull? Perishable Products with Freshness-Keeping Effort," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-29, February.
  • Handle: RePEc:wsi:apjorx:v:36:y:2019:i:01:n:s0217595919500088
    DOI: 10.1142/S0217595919500088
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595919500088
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595919500088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amorim, P. & Günther, H.-O. & Almada-Lobo, B., 2012. "Multi-objective integrated production and distribution planning of perishable products," International Journal of Production Economics, Elsevier, vol. 138(1), pages 89-101.
    2. Zanoni, Simone & Zavanella, Lucio, 2012. "Chilled or frozen? Decision strategies for sustainable food supply chains," International Journal of Production Economics, Elsevier, vol. 140(2), pages 731-736.
    3. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    4. Harish Krishnan & Roman Kapuscinski & David A. Butz, 2004. "Coordinating Contracts for Decentralized Supply Chains with Retailer Promotional Effort," Management Science, INFORMS, vol. 50(1), pages 48-63, January.
    5. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    6. Wu, Qing & Mu, Yinping & Feng, Yi, 2015. "Coordinating contracts for fresh product outsourcing logistics channels with power structures," International Journal of Production Economics, Elsevier, vol. 160(C), pages 94-105.
    7. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    8. Jun Li & Xiaoqiang Cai & Yinlian Zeng, 2016. "Cost allocation for less-than-truckload collaboration among perishable product retailers," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 81-117, January.
    9. Herbon, Avi & Levner, Eugene & Cheng, T.C.E., 2014. "Perishable inventory management with dynamic pricing using time–temperature indicators linked to automatic detecting devices," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 605-613.
    10. Xiuli Chao & Xiting Gong & Cong Shi & Huanan Zhang, 2015. "Approximation Algorithms for Perishable Inventory Systems," Operations Research, INFORMS, vol. 63(3), pages 585-601, June.
    11. Zuurbier, Peter J.P., 1999. "Supply Chain Management In The Fresh Produce Industry: A Mile To Go?," Journal of Food Distribution Research, Food Distribution Research Society, vol. 30(1), pages 1-11, March.
    12. Candace Arai Yano & Hau L. Lee, 1995. "Lot Sizing with Random Yields: A Review," Operations Research, INFORMS, vol. 43(2), pages 311-334, April.
    13. Cai, Xiaoqiang & Chen, Jian & Xiao, Yongbo & Xu, Xiaolin & Yu, Gang, 2013. "Fresh-product supply chain management with logistics outsourcing," Omega, Elsevier, vol. 41(4), pages 752-765.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nana Wan & Li Li & Xiaozhi Wu & Jianchang Fan, 2021. "Coordination of a fresh agricultural product supply chain with option contract under cost and loss disruptions," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-15, June.
    2. Zhiping Lin & Jing Peng & Jia Wang, 2023. "The cash flows in push and pull supply chains under supply disruptions," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 1191-1202, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    2. Jake Clarkson & Michael A. Voelkel & Anna‐Lena Sachs & Ulrich W. Thonemann, 2023. "The periodic review model with independent age‐dependent lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 813-828, March.
    3. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    4. Tal Avinadav & Tatyana Chernonog & Yael Lahav & Uriel Spiegel, 2017. "Dynamic pricing and promotion expenditures in an EOQ model of perishable products," Annals of Operations Research, Springer, vol. 248(1), pages 75-91, January.
    5. Avinadav, Tal, 2020. "The effect of decision rights allocation on a supply chain of perishable products under a revenue-sharing contract," International Journal of Production Economics, Elsevier, vol. 225(C).
    6. Madhukar Nagare & Pankaj Dutta & Pravin Suryawanshi, 2020. "Optimal procurement and discount pricing for single-period non-instantaneous deteriorating products with promotional efforts," Operational Research, Springer, vol. 20(1), pages 89-117, March.
    7. V. Radhamani & B. Sivakumar & G. Arivarignan, 2022. "A Comparative Study on Replenishment Policies for Perishable Inventory System with Service Facility and Multiple Server Vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 229-265, March.
    8. Janssen, Larissa & Diabat, Ali & Sauer, Jürgen & Herrmann, Frank, 2018. "A stochastic micro-periodic age-based inventory replenishment policy for perishable goods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 445-465.
    9. Yang, Lei & Tang, Ruihong, 2019. "Comparisons of sales modes for a fresh product supply chain with freshness-keeping effort," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 425-448.
    10. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    11. Li‐Ming Chen & Amar Sapra, 2021. "Inventory renewal for a perishable product: Economies of scale and age‐dependent demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 359-377, April.
    12. Onur Kaya & Aylin Lelizar Polat, 2017. "Coordinated pricing and inventory decisions for perishable products," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 589-606, March.
    13. N. Bora Keskin & Yuexing Li & Jing-Sheng Song, 2022. "Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment," Management Science, INFORMS, vol. 68(3), pages 1938-1958, March.
    14. Qingren He & Shuting Li & Fei Xu & Wanhua Qiu, 2022. "Deep-Processing Service and Pricing Decisions for Fresh Products with the Rate of Deterioration," Mathematics, MDPI, vol. 10(5), pages 1-19, February.
    15. Kun-Jen Chung & Jui-Jung Liao & Hari Mohan Srivastava & Shih-Fang Lee & Shy-Der Lin, 2021. "The EOQ Model for Deteriorating Items with a Conditional Trade Credit Linked to Order Quantity in a Supply Chain System," Mathematics, MDPI, vol. 9(18), pages 1-28, September.
    16. Ketzenberg, Michael & Gaukler, Gary & Salin, Victoria, 2018. "Expiration dates and order quantities for perishables," European Journal of Operational Research, Elsevier, vol. 266(2), pages 569-584.
    17. Ma, Xueli & Wang, Jian & Bai, Qingguo & Wang, Shuyun, 2020. "Optimization of a three-echelon cold chain considering freshness-keeping efforts under cap-and-trade regulation in Industry 4.0," International Journal of Production Economics, Elsevier, vol. 220(C).
    18. Ioannis Mallidis & Dimitrios Vlachos & Volha Yakavenka & Zafeiriou Eleni, 2020. "Development of a single period inventory planning model for perishable product redistribution," Annals of Operations Research, Springer, vol. 294(1), pages 697-713, November.
    19. Biman Kanti Nath & Nabendu Sen, 2022. "A Partially Backlogged Inventory Model for Time-Deteriorating Items Using Penalty Cost and Time-Dependent Holding Cost," SN Operations Research Forum, Springer, vol. 3(4), pages 1-14, December.
    20. Chaitanyakumar N. Rapolu & Deepa H. Kandpal, 2020. "Joint pricing, advertisement, preservation technology investment and inventory policies for non-instantaneous deteriorating items under trade credit," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 274-300, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:36:y:2019:i:01:n:s0217595919500088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.