IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i2p671-685.html
   My bibliography  Save this article

Learning from the aggregated optimum: Managing port wine inventory in the face of climate risks

Author

Listed:
  • Pahr, Alexander
  • Grunow, Martin
  • Amorim, Pedro

Abstract

Port wine stocks ameliorate during storage, facilitating product differentiation according to age. This induces a trade-off between immediate revenues and further maturation. Varying climate conditions in the limited supply region lead to stochastic purchase prices for wine grapes. Decision makers must integrate recurring purchasing, production, and issuance decisions. Because stocks from different age classes can be blended to create final products, the solution space increases exponentially in the number of age classes. We model the problem of managing port wine inventory as a Markov decision process, considering decay as an additional source of uncertainty. For small problems, we derive general management strategies from the long-run behavior of the optimal policy. Our solution approach for otherwise intractable large problems, therefore, first aggregates age classes to create a tractable problem representation. We then use machine learning to train tree-based decision rules that reproduce the optimal aggregated policy and the enclosed management strategies. The derived rules are scaled back to solve the original problem. Learning from the aggregated optimum outperforms benchmark rules by 21.4% in annual profits (while leaving a 2.8%-gap to an upper bound). For an industry case, we obtain a 17.4%-improvement over current practices. Our research provides distinct strategies for how producers can mitigate climate risks. The purchasing policy dynamically adapts to climate-dependent price fluctuations. Uncertainties are met with lower production of younger products, whereas strategic surpluses of older stocks ensure high production of older products. Moreover, a wide spread in the age classes used for blending reduces decay risk exposure.

Suggested Citation

  • Pahr, Alexander & Grunow, Martin & Amorim, Pedro, 2025. "Learning from the aggregated optimum: Managing port wine inventory in the face of climate risks," European Journal of Operational Research, Elsevier, vol. 323(2), pages 671-685.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:671-685
    DOI: 10.1016/j.ejor.2024.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724009378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Civelek, Ismail & Karaesmen, Itir & Scheller-Wolf, Alan, 2015. "Blood platelet inventory management with protection levels," European Journal of Operational Research, Elsevier, vol. 243(3), pages 826-838.
    2. Huanan Zhang & Cong Shi & Xiuli Chao, 2016. "Technical Note—Approximation Algorithms for Perishable Inventory Systems with Setup Costs," Operations Research, INFORMS, vol. 64(2), pages 432-440, April.
    3. Itir Z. Karaesmen & Alan Scheller–Wolf & Borga Deniz, 2011. "Managing Perishable and Aging Inventories: Review and Future Research Directions," International Series in Operations Research & Management Science, in: Karl G. Kempf & Pınar Keskinocak & Reha Uzsoy (ed.), Planning Production and Inventories in the Extended Enterprise, chapter 0, pages 393-436, Springer.
    4. Quiroga, Sonia & Iglesias, Ana, 2009. "A comparison of the climate risks of cereal, citrus, grapevine and olive production in Spain," Agricultural Systems, Elsevier, vol. 101(1-2), pages 91-100, June.
    5. Borga Deniz & Itir Karaesmen & Alan Scheller-Wolf, 2010. "Managing Perishables with Substitution: Inventory Issuance and Replenishment Heuristics," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 319-329, July.
    6. Xiuli Chao & Xiting Gong & Cong Shi & Huanan Zhang, 2015. "Approximation Algorithms for Perishable Inventory Systems," Operations Research, INFORMS, vol. 63(3), pages 585-601, June.
    7. Ching-Rong Lin & Joseph Buongiorno, 1998. "Tree Diversity, Landscape Diversity, and Economics of Maple-Birch Forests: Implications of Markovian Models," Management Science, INFORMS, vol. 44(10), pages 1351-1366, October.
    8. Steven Nahmias, 1982. "Perishable Inventory Theory: A Review," Operations Research, INFORMS, vol. 30(4), pages 680-708, August.
    9. Haijema, René & Minner, Stefan, 2019. "Improved ordering of perishables: The value of stock-age information," International Journal of Production Economics, Elsevier, vol. 209(C), pages 316-324.
    10. Skouri, K. & Konstantaras, I. & Papachristos, S. & Ganas, I., 2009. "Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate," European Journal of Operational Research, Elsevier, vol. 192(1), pages 79-92, January.
    11. Chon-Huat Goh & Betsy S. Greenberg & Hirofumi Matsuo, 1993. "Two-Stage Perishable Inventory Models," Management Science, INFORMS, vol. 39(5), pages 633-649, May.
    12. Xiuli Chao & Xiting Gong & Cong Shi & Chaolin Yang & Huanan Zhang & Sean X. Zhou, 2018. "Approximation Algorithms for Capacitated Perishable Inventory Systems with Positive Lead Times," Management Science, INFORMS, vol. 64(11), pages 5038-5061, November.
    13. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    14. Dimitris Bertsimas & Velibor V. Mišić, 2016. "Decomposable Markov Decision Processes: A Fluid Optimization Approach," Operations Research, INFORMS, vol. 64(6), pages 1537-1555, December.
    15. Haijema, Rene, 2014. "Optimal ordering, issuance and disposal policies for inventory management of perishable products," International Journal of Production Economics, Elsevier, vol. 157(C), pages 158-169.
    16. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    17. Shouchang Chen & Yanzhi Li & Yi Yang & Weihua Zhou, 2021. "Managing Perishable Inventory Systems with Age‐differentiated Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3784-3799, October.
    18. Axel Parmentier, 2022. "Learning to Approximate Industrial Problems by Operations Research Classic Problems," Operations Research, INFORMS, vol. 70(1), pages 606-623, January.
    19. Xin Chen & Zhan Pang & Limeng Pan, 2014. "Coordinating Inventory Control and Pricing Strategies for Perishable Products," Operations Research, INFORMS, vol. 62(2), pages 284-300, April.
    20. Panos Kouvelis & Ye Liu & Yunzhe Qiu & Danko Turcic, 2023. "Managing Operations of a Hog Farm Facing Volatile Markets: Inventory and Selling Strategies," Manufacturing & Service Operations Management, INFORMS, vol. 25(5), pages 1711-1729, September.
    21. Yi Yang & Youhua (Frank) Chen & Yun Zhou, 2014. "Coordinating Inventory Control and Pricing Strategies Under Batch Ordering," Operations Research, INFORMS, vol. 62(1), pages 25-37, February.
    22. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    23. Buisman, Marjolein E. & Rohmer, Sonja U.K., 2022. "Inventory decisions for ameliorating products under consideration of stochastic demand," International Journal of Production Economics, Elsevier, vol. 252(C).
    24. Arzum Akkaş & Dorothee Honhon, 2022. "Shipment Policies for Products with Fixed Shelf Lives: Impact on Profits and Waste," Manufacturing & Service Operations Management, INFORMS, vol. 24(3), pages 1611-1629, May.
    25. Deepak K. Ray & James S. Gerber & Graham K. MacDonald & Paul C. West, 2015. "Climate variation explains a third of global crop yield variability," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    26. Shiaw Y. Su & Rolf A. Deininger, 1972. "Generalization of White's Method of Successive Approximations to Periodic Markovian Decision Processes," Operations Research, INFORMS, vol. 20(2), pages 318-326, April.
    27. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    28. Shouchang Chen & Yanzhi Li & Weihua Zhou, 2019. "Joint Decisions for Blood Collection and Platelet Inventory Control," Production and Operations Management, Production and Operations Management Society, vol. 28(7), pages 1674-1691, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shouchang Chen & Yanzhi Li & Yi Yang & Weihua Zhou, 2021. "Managing Perishable Inventory Systems with Age‐differentiated Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3784-3799, October.
    2. Jake Clarkson & Michael A. Voelkel & Anna‐Lena Sachs & Ulrich W. Thonemann, 2023. "The periodic review model with independent age‐dependent lifetimes," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 813-828, March.
    3. Ding, Jingying & Peng, Zhenkang, 2024. "Heuristics for perishable inventory systems under mixture issuance policies," Omega, Elsevier, vol. 126(C).
    4. Kebing Chen & Jing‐Sheng Song & Jennifer Shang & Tiaojun Xiao, 2022. "Managing hospital platelet inventory with mid‐cycle expedited replenishments and returns," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2015-2037, May.
    5. Hailun Zhang & Jiheng Zhang & Rachel Q. Zhang, 2020. "Simple Policies with Provable Bounds for Managing Perishable Inventory," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2637-2650, November.
    6. Hossein Abouee‐Mehrizi & Mahdi Mirjalili & Vahid Sarhangian, 2022. "Data‐driven platelet inventory management under uncertainty in the remaining shelf life of units," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3914-3932, October.
    7. Sasanuma, Katsunobu & Delasay, Mohammad & Pitocco, Christine & Scheller-Wolf, Alan & Sexton, Thomas, 2022. "A marginal analysis framework to incorporate the externality effect of ordering perishables," Operations Research Perspectives, Elsevier, vol. 9(C).
    8. Herbon, Avi, 2017. "Should retailers hold a perishable product having different ages? The case of a homogeneous market and multiplicative demand model," International Journal of Production Economics, Elsevier, vol. 193(C), pages 479-490.
    9. Avinadav, Tal, 2020. "The effect of decision rights allocation on a supply chain of perishable products under a revenue-sharing contract," International Journal of Production Economics, Elsevier, vol. 225(C).
    10. Gorria, Carlos & Lezaun, Mikel & López, F. Javier, 2022. "Performance measures of nonstationary inventory models for perishable products under the EWA policy," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1137-1150.
    11. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    12. Dehghani, Maryam & Abbasi, Babak & Oliveira, Fabricio, 2021. "Proactive transshipment in the blood supply chain: A stochastic programming approach," Omega, Elsevier, vol. 98(C).
    13. Xiuli Chao & Xiting Gong & Cong Shi & Huanan Zhang, 2015. "Approximation Algorithms for Perishable Inventory Systems," Operations Research, INFORMS, vol. 63(3), pages 585-601, June.
    14. Vahid Sarhangian & Hossein Abouee-Mehrizi & Opher Baron & Oded Berman, 2018. "Threshold-Based Allocation Policies for Inventory Management of Red Blood Cells," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 347-362, May.
    15. Ketzenberg, Michael & Oliva, Rogelio & Wang, Yimin & Webster, Scott, 2023. "Retailer inventory data sharing in a fresh product supply chain," European Journal of Operational Research, Elsevier, vol. 307(2), pages 680-693.
    16. Mohamadi, Navid & Transchel, Sandra & Fransoo, Jan C., 2025. "Coordinate or collaborate? Reducing food waste in perishable-product supply chains," European Journal of Operational Research, Elsevier, vol. 323(3), pages 795-809.
    17. Li‐Ming Chen & Amar Sapra, 2021. "Inventory renewal for a perishable product: Economies of scale and age‐dependent demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(3), pages 359-377, April.
    18. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    19. Onur Kaya & Aylin Lelizar Polat, 2017. "Coordinated pricing and inventory decisions for perishable products," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 589-606, March.
    20. Zhou, Haijie & Chen, Kebing & Wang, Shengbin, 2023. "Two-period pricing and inventory decisions of perishable products with partial lost sales," European Journal of Operational Research, Elsevier, vol. 310(2), pages 611-626.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:671-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.