IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v32y2015i01ns0217595915400035.html
   My bibliography  Save this article

Balancing Load via Small Coalitions in Selfish Ring Routing Games

Author

Listed:
  • Xujin Chen

    (Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, P. R. China)

  • Xiaodong Hu

    (Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, P. R. China)

  • Weidong Ma

    (Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100190, P. R. China)

Abstract

This paper concerns the asymmetric atomic selfish routing game for load balancing in ring networks. In the selfish routing, each player selects a path in the ring network to route one unit traffic between its source and destination nodes, aiming at a minimum maximum link load along its own path. The selfish path selections by individuals ignore the system objective of minimizing the maximum load over all network links. This selfish ring load (SRL) game arises in a wide variety of applications in decentralized network routing, where network performance is often measured by the price of anarchy (PoA), the worst-case ratio between the maximum link loads in an equilibrium routing and an optimal routing. It has been known that the PoA of SRL with respect to classical Nash Equilibrium (NE) cannot be upper bounded by any constant, showing large loss of efficiency at some NE outcome.In an effort to improve the network performance in the SRL game, we generalize the model to so-called SRL with collusion (SRLC) which allows coordination within any coalition of up to k selfish players on the condition that every player of the coalition benefits from the coordination. We prove that, for m-player game on n-node ring, the PoA of SRLC is n - 1 when k ≤ 2, drops to 2 when k = 3 and is at least 1 + 2/m for k ≥ 4. Our study shows that on one hand, the performance of ring networks, in terms of maximum load, benefits significantly from coordination of self-interested players within small-sized coalitions; on the other hand, the equilibrium routing in SRL might not reach global optimum even if any number of players can coordinate.

Suggested Citation

  • Xujin Chen & Xiaodong Hu & Weidong Ma, 2015. "Balancing Load via Small Coalitions in Selfish Ring Routing Games," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(01), pages 1-27.
  • Handle: RePEc:wsi:apjorx:v:32:y:2015:i:01:n:s0217595915400035
    DOI: 10.1142/S0217595915400035
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595915400035
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595915400035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Demange,Gabrielle & Wooders,Myrna (ed.), 2005. "Group Formation in Economics," Cambridge Books, Cambridge University Press, number 9780521842716.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fogel, Kathy & Jandik, Tomas & McCumber, William R., 2018. "CFO social capital and private debt," Journal of Corporate Finance, Elsevier, vol. 52(C), pages 28-52.
    2. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    3. Demange, Gabrielle, 2012. "On party-proportional representation under district distortions," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 181-191.
    4. Ana Mauleon & Huasheng Song & Vincent Vannetelbosch, 2010. "Networks of Free Trade Agreements among Heterogeneous Countries," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 12(3), pages 471-500, June.
    5. Alberto Alesina & Eliana La Ferrara, 2003. "Ethnic Diversity and Economic Performance," Harvard Institute of Economic Research Working Papers 2028, Harvard - Institute of Economic Research.
    6. Jean-François Caulier & Ana Mauleon & Vincent Vannetelbosch, 2013. "Contractually stable networks," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 483-499, May.
    7. Jurjen Kamphorst & Gerard Van Der Laan, 2007. "Network Formation Under Heterogeneous Costs: The Multiple Group Model," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(04), pages 599-635.
    8. Sommarat Chantarat & Christopher Barrett, 2012. "Social network capital, economic mobility and poverty traps," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(3), pages 299-342, September.
    9. Choi, Syngjoo & Gale, Douglas & Kariv, Shachar & Palfrey, Thomas, 2011. "Network architecture, salience and coordination," Games and Economic Behavior, Elsevier, vol. 73(1), pages 76-90, September.
    10. in 't Veld, Daan & van der Leij, Marco & Hommes, Cars, 2020. "The formation of a core-periphery structure in heterogeneous financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    11. Herings, P. Jean-Jacques & Mauleon, Ana & Vannetelbosch, Vincent, 2009. "Farsightedly stable networks," Games and Economic Behavior, Elsevier, vol. 67(2), pages 526-541, November.
    12. Alexandre Belloni & Changrong Deng & Saša Pekeč, 2017. "Mechanism and Network Design with Private Negative Externalities," Operations Research, INFORMS, vol. 65(3), pages 577-594, June.
    13. Palsule-Desai, Omkar D., 2015. "Cooperatives for fruits and vegetables in emerging countries: Rationalization and impact of decentralization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 114-140.
    14. Gabrielle Demange, 2013. "On Allocating Seats To Parties And Districts: Apportionments," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-14.
    15. Ben Golub & Yair Livne, 2010. "Strategic Random Networks," Working Papers 10-21, NET Institute.
    16. Elsner, Wolfram & Heinrich, Torsten, 2009. "A simple theory of 'meso'. On the co-evolution of institutions and platform size--With an application to varieties of capitalism and 'medium-sized' countries," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 38(5), pages 843-858, October.
    17. Coralio Ballester & Antoni Calvó-Armengol & Yves Zenou, 2006. "Who's Who in Networks. Wanted: The Key Player," Econometrica, Econometric Society, vol. 74(5), pages 1403-1417, September.
    18. Gabrielle Demange, 2017. "The stability of group formation," Revue d'économie politique, Dalloz, vol. 127(4), pages 495-516.
    19. Enrique Fatas & Miguel Meléndez-Jiménez & Hector Solaz, 2010. "An experimental analysis of team production in networks," Experimental Economics, Springer;Economic Science Association, vol. 13(4), pages 399-411, December.
    20. Bernard Grofman & Orestis Troumpounis & Dimitrios Xefteris, 2016. "Electoral competition with primaries and quality asymmetries," Working Papers 135286117, Lancaster University Management School, Economics Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:32:y:2015:i:01:n:s0217595915400035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.