IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v29y2021i6p1072-1085.html
   My bibliography  Save this article

Development of on‐road emission inventory and evaluation of policy intervention on future emission reduction toward sustainability in Vietnam

Author

Listed:
  • Shimul Roy
  • Yun Fat Lam
  • Ngo Tho Hung
  • Johnny C. L. Chan

Abstract

This study developed updated emission inventories for 2010, 2015, and 2019 base‐year for road transportation in Vietnam with future projections for 2020, 2025, and 2030. In general (2019 base‐year), motorcycles contributed a substantial CO, NMVOC, PM10, PM2.5, OC, and CH4 (~53%–89%), while BC, NOx, and SO2 were mostly from diesel‐powered trucks (~42%–76.3%). The countrywide emission contributions from two rapidly growing cities (Hanoi and Ho Chi Minh [HCM]) were estimated to be 11%–16.2% and 16.6%–20.2%, respectively, and CO2 was found to be the leading pollutant that contributes to the overall Global Warming Potential (41% of CO2e) in Vietnam. In terms of future emission projections, the suggested or planned policy interventions (i.e., banning motorcycles, improved fuel quality, introducing electric vehicles, and public transportation) are expected to lead to 11%–125% (compared to Business As Usual) emission reductions in 2030, pushing Vietnam a step toward environmental sustainability.

Suggested Citation

  • Shimul Roy & Yun Fat Lam & Ngo Tho Hung & Johnny C. L. Chan, 2021. "Development of on‐road emission inventory and evaluation of policy intervention on future emission reduction toward sustainability in Vietnam," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1072-1085, November.
  • Handle: RePEc:wly:sustdv:v:29:y:2021:i:6:p:1072-1085
    DOI: 10.1002/sd.2203
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2203
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huo, Hong & Zhang, Qiang & He, Kebin & Yao, Zhiliang & Wang, Michael, 2012. "Vehicle-use intensity in China: Current status and future trend," Energy Policy, Elsevier, vol. 43(C), pages 6-16.
    2. Soylu, Seref, 2007. "Estimation of Turkish road transport emissions," Energy Policy, Elsevier, vol. 35(8), pages 4088-4094, August.
    3. Bang Quoc Ho & H. N. Khue Vu, 2019. "Air Emission Inventory," Chapters, in: Jorge Del Real Olvera (ed.), Air Pollution - Monitoring, Quantification and Removal of Gases and Particles, IntechOpen.
    4. Letisha S. Fong & Alberto Salvo & David Taylor, 2020. "Evidence of the environmental Kuznets curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1441-1456, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    2. Xiaowei Song & Yongpei Hao, 2019. "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 16(23), pages 1-21, November.
    3. Xu Kuang & Fuquan Zhao & Han Hao & Zongwei Liu, 2019. "Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 11(12), pages 1-28, June.
    4. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2019. "Air Pollutant Emissions from Vehicles and Their Abatement Scenarios: A Case Study of Chengdu-Chongqing Urban Agglomeration, China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    5. Tseng, Po-Hsing & Lin, Dung-Ying & Chien, Steven, 2014. "Investigating the impact of highway electronic toll collection to the external cost: A case study in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 265-272.
    6. Xiaowei Song & Yongpei Hao, 2021. "Research on the Vehicle Emission Characteristics and Its Prevention and Control Strategy in the Central Plains Urban Agglomeration, China," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    7. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    8. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    10. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    11. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    12. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    13. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    14. Li, Yi & Wang, Zhaohua & Wang, Ke & Zhang, Bin, 2021. "Fuel economy of Chinese light-duty car manufacturers: An efficiency analysis perspective," Energy, Elsevier, vol. 220(C).
    15. Qaisar Shahzad & Kentaka Aruga, 2023. "Does the Environmental Kuznets Curve Hold for Coal Consumption? Evidence from South and East Asian Countries," Sustainability, MDPI, vol. 15(6), pages 1-17, March.
    16. Liao, Chun-Hsiung & Tseng, Po-Hsing & Cullinane, Kevin & Lu, Chin-Shan, 2010. "The impact of an emerging port on the carbon dioxide emissions of inland container transport: An empirical study of Taipei port," Energy Policy, Elsevier, vol. 38(9), pages 5251-5257, September.
    17. Mahlia, T.M.I. & Tohno, S. & Tezuka, T., 2012. "History and current status of the motor vehicle energy labeling and its implementation possibilities in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1828-1844.
    18. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    19. Ben Dror, Maya & Qin, Lanzhi & An, Feng, 2019. "The gap between certified and real-world passenger vehicle fuel consumption in China measured using a mobile phone application data," Energy Policy, Elsevier, vol. 128(C), pages 8-16.
    20. Linna Li, 2019. "Structure and influencing factors of CO2 emissions from transport sector in three major metropolitan regions of China: estimation and decomposition," Transportation, Springer, vol. 46(4), pages 1245-1269, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:29:y:2021:i:6:p:1072-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.