IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i1p9-16.html
   My bibliography  Save this article

Communicating Geographical Risks in Crisis Management: The Need for Research

Author

Listed:
  • Simon French
  • Nikolaos Argyris
  • Stephanie M. Haywood
  • Matthew C. Hort
  • Jim Q. Smith

Abstract

In any crisis, there is a great deal of uncertainty, often geographical uncertainty or, more precisely, spatiotemporal uncertainty. Examples include the spread of contamination from an industrial accident, drifting volcanic ash, and the path of a hurricane. Estimating spatiotemporal probabilities is usually a difficult task, but that is not our primary concern. Rather, we ask how analysts can communicate spatiotemporal uncertainty to those handling the crisis. We comment on the somewhat limited literature on the representation of spatial uncertainty on maps. We note that many cognitive issues arise and that the potential for confusion is high. We note that in the early stages of handling a crisis, the uncertainties involved may be deep, i.e., difficult or impossible to quantify in the time available. In such circumstance, we suggest the idea of presenting multiple scenarios.

Suggested Citation

  • Simon French & Nikolaos Argyris & Stephanie M. Haywood & Matthew C. Hort & Jim Q. Smith, 2019. "Communicating Geographical Risks in Crisis Management: The Need for Research," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 9-16, January.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:1:p:9-16
    DOI: 10.1111/risa.12904
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12904
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hao‐Che Wu & Michael K. Lindell & Carla S. Prater & Charles D. Samuelson, 2014. "Effects of Track and Threat Information on Judgments of Hurricane Strike Probability," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1025-1039, June.
    2. Roger Flage & Terje Aven & Enrico Zio & Piero Baraldi, 2014. "Concerns, Challenges, and Directions of Development for the Issue of Representing Uncertainty in Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1196-1207, July.
    3. S French, 2013. "Cynefin, statistics and decision analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(4), pages 547-561, April.
    4. Dolores J. Severtson & Jeffrey D. Myers, 2013. "The Influence of Uncertain Map Features on Risk Beliefs and Perceived Ambiguity for Maps of Modeled Cancer Risk from Air Pollution," Risk Analysis, John Wiley & Sons, vol. 33(5), pages 818-837, May.
    5. Simon French, 2015. "Cynefin: uncertainty, small worlds and scenarios," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(10), pages 1635-1645, October.
    6. Nathan F. Dieckmann & Ellen Peters & Robin Gregory, 2015. "At Home on the Range? Lay Interpretations of Numerical Uncertainty Ranges," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1281-1295, July.
    7. D Williamson & M Goldstein, 2012. "Bayesian policy support for adaptive strategies using computer models for complex physical systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1021-1033, August.
    8. Stephanie Deitrick & Elizabeth A. Wentz, 2015. "Developing Implicit Uncertainty Visualization Methods Motivated by Theories in Decision Science," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 105(3), pages 531-551, May.
    9. Louis Anthony (Tony) Cox, 2012. "Confronting Deep Uncertainties in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1607-1629, October.
    10. Gilberto Montibeller & Detlof von Winterfeldt, 2015. "Cognitive and Motivational Biases in Decision and Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1230-1251, July.
    11. Roger M. Cooke, 2015. "Messaging climate change uncertainty," Nature Climate Change, Nature, vol. 5(1), pages 8-10, January.
    12. Robert L. Winkler, 2015. "The Importance of Communicating Uncertainties in Forecasts: Overestimating the Risks from Winter Storm Juno," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 349-353, March.
    13. Stewart, Theodor J. & French, Simon & Rios, Jesus, 2013. "Integrating multicriteria decision analysis and scenario planning—Review and extension," Omega, Elsevier, vol. 41(4), pages 679-688.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Argyris & Valentina Ferretti & Simon French & Seth Guikema & Gilberto Montibeller, 2019. "Advances in Spatial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 1-8, January.
    2. Vicki Bier, 2020. "The Role of Decision Analysis in Risk Analysis: A Retrospective," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2207-2217, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon French & Nikolaos Argyris, 2018. "Decision Analysis and Political Processes," Decision Analysis, INFORMS, vol. 15(4), pages 208-222, December.
    2. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    3. Ram, Camelia, 2020. "Scenario presentation and scenario generation in multi-criteria assessments: An exploratory study," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    4. F. Brocal & C. González & D. Komljenovic & P. F. Katina & Miguel A. Sebastián, 2019. "Emerging Risk Management in Industry 4.0: An Approach to Improve Organizational and Human Performance in the Complex Systems," Complexity, Hindawi, vol. 2019, pages 1-13, June.
    5. Vicki Bier, 2020. "The Role of Decision Analysis in Risk Analysis: A Retrospective," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2207-2217, November.
    6. Robin Gregory & Theresa Satterfield & David R. Boyd, 2020. "People, Pipelines, and Probabilities: Clarifying Significance and Uncertainty in Environmental Impact Assessments," Risk Analysis, John Wiley & Sons, vol. 40(2), pages 218-226, February.
    7. Shuang Liu & Kirsten Maclean & Cathy Robinson, 2019. "A cost-effective framework to prioritise stakeholder participation options," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 221-241, November.
    8. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    9. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    10. Sven Ove Hansson & Terje Aven, 2014. "Is Risk Analysis Scientific?," Risk Analysis, John Wiley & Sons, vol. 34(7), pages 1173-1183, July.
    11. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    12. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    13. Jaspersen, Johannes G., 2022. "Convex combinations in judgment aggregation," European Journal of Operational Research, Elsevier, vol. 299(2), pages 780-794.
    14. Wang, Qun & Jia, Guozhu & Song, Wenyan, 2022. "Identifying critical factors in systems with interrelated components: A method considering heterogeneous influence and strength attenuation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 456-470.
    15. Jin Tian & Yundou Wang & Shutian Gao, 2022. "Analysis of Mining-Related Injuries in Chinese Coal Mines and Related Risk Factors: A Statistical Research Study Based on a Meta-Analysis," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    16. Al-Ebbini, Lina & Oztekin, Asil & Chen, Yao, 2016. "FLAS: Fuzzy lung allocation system for US-based transplantations," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1051-1065.
    17. Böyükaslan, Adem & Ecer, Fatih, 2021. "Determination of drivers for investing in cryptocurrencies through a fuzzy full consistency method-Bonferroni (FUCOM-F’B) framework," Technology in Society, Elsevier, vol. 67(C).
    18. Dimitrios Gouglas & Kendall Hoyt & Elizabeth Peacocke & Aristidis Kaloudis & Trygve Ottersen & John-Arne Røttingen, 2019. "Setting Strategic Objectives for the Coalition for Epidemic Preparedness Innovations: An Exploratory Decision Analysis Process," Service Science, INFORMS, vol. 49(6), pages 430-446, November.
    19. Bjørnsen, Kjartan & Selvik, Jon Tømmerås & Aven, Terje, 2019. "A semi-quantitative assessment process for improved use of the expected value of information measure in safety management," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 494-502.
    20. Amro Nasr & Oskar Larsson Ivanov & Ivar Björnsson & Jonas Johansson & Dániel Honfi, 2021. "Towards a Conceptual Framework for Built Infrastructure Design in an Uncertain Climate: Challenges and Research Needs," Sustainability, MDPI, vol. 13(21), pages 1-19, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:1:p:9-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.