IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i3p356-367.html
   My bibliography  Save this article

Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems

Author

Listed:
  • J. Park
  • T. P. Seager
  • P. S. C. Rao
  • M. Convertino
  • I. Linkov

Abstract

Recent natural and man‐made catastrophes, such as the Fukushima nuclear power plant, flooding caused by Hurricane Katrina, the Deepwater Horizon oil spill, the Haiti earthquake, and the mortgage derivatives crisis, have renewed interest in the concept of resilience, especially as it relates to complex systems vulnerable to multiple or cascading failures. Although the meaning of resilience is contested in different contexts, in general resilience is understood to mean the capacity to adapt to changing conditions without catastrophic loss of form or function. In the context of engineering systems, this has sometimes been interpreted as the probability that system conditions might exceed an irrevocable tipping point. However, we argue that this approach improperly conflates resilience and risk perspectives by expressing resilience exclusively in risk terms. In contrast, we describe resilience as an emergent property of what an engineering system does, rather than a static property the system has. Therefore, resilience cannot be measured at the systems scale solely from examination of component parts. Instead, resilience is better understood as the outcome of a recursive process that includes: sensing, anticipation, learning, and adaptation. In this approach, resilience analysis can be understood as differentiable from, but complementary to, risk analysis, with important implications for the adaptive management of complex, coupled engineering systems. Management of the 2011 flooding in the Mississippi River Basin is discussed as an example of the successes and challenges of resilience‐based management of complex natural systems that have been extensively altered by engineered structures.

Suggested Citation

  • J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:3:p:356-367
    DOI: 10.1111/j.1539-6924.2012.01885.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2012.01885.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2012.01885.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Louis Anthony (Tony) Cox, 2012. "Confronting Deep Uncertainties in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1607-1629, October.
    2. Thomas P. Seager, 2008. "The sustainability spectrum and the sciences of sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 17(7), pages 444-453, November.
    3. Möller, Niklas & Hansson, Sven Ove, 2008. "Principles of engineering safety: Risk and uncertainty reduction," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 798-805.
    4. Paul J. Crutzen, 2002. "Geology of mankind," Nature, Nature, vol. 415(6867), pages 23-23, January.
    5. Terje Aven & Ortwin Renn, 2009. "The Role of Quantitative Risk Assessments for Characterizing Risk and Uncertainty and Delineating Appropriate Risk Management Options, with Special Emphasis on Terrorism Risk," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 587-600, April.
    6. Alessandro Vespignani, 2010. "The fragility of interdependency," Nature, Nature, vol. 464(7291), pages 984-985, April.
    7. Yakov Ben‐Haim, 2012. "Why Risk Analysis is Difficult, and Some Thoughts on How to Proceed," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1638-1646, October.
    8. Aban, Inmaculada B. & Meerschaert, Mark M. & Panorska, Anna K., 2006. "Parameter Estimation for the Truncated Pareto Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 270-277, March.
    9. Linda P. Beckerman, 2000. "Application of complex systems science to systems engineering," Systems Engineering, John Wiley & Sons, vol. 3(2), pages 96-102.
    10. Fikret Berkes, 2007. "Understanding uncertainty and reducing vulnerability: lessons from resilience thinking," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(2), pages 283-295, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    2. Payuna Uday & Karen Marais, 2015. "Designing Resilient Systems‐of‐Systems: A Survey of Metrics, Methods, and Challenges," Systems Engineering, John Wiley & Sons, vol. 18(5), pages 491-510, October.
    3. Yeowon Kim & Daniel A. Eisenberg & Emily N. Bondank & Mikhail V. Chester & Giuseppe Mascaro & B. Shane Underwood, 2017. "Fail-safe and safe-to-fail adaptation: decision-making for urban flooding under climate change," Climatic Change, Springer, vol. 145(3), pages 397-412, December.
    4. Shingo Yoshida & Hironori Yagi, 2021. "Long-Term Development of Urban Agriculture: Resilience and Sustainability of Farmers Facing the Covid-19 Pandemic in Japan," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    5. Castillo, Joan del & Serra, Isabel, 2015. "Likelihood inference for generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 116-128.
    6. Shahzad Hussain & Sajjad Haider Bhatti & Tanvir Ahmad & Muhammad Ahmed Shehzad, 2021. "Parameter estimation of the Pareto distribution using least squares approaches blended with different rank methods and its applications in modeling natural catastrophes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1693-1708, June.
    7. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    8. Ana Raquel Nunes, 2021. "Exploring the interactions between vulnerability, resilience and adaptation to extreme temperatures," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2261-2293, December.
    9. Sellevåg, Stig Rune, 2021. "Changes in inoperability for interdependent industry sectors in Norway from 2012 to 2017," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    10. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.
    11. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    12. Tommaso Luzzati & Angela Parenti & Tommaso Rughi, 2017. "Spatial error regressions for testing the Cancer-EKC," Discussion Papers 2017/218, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    13. Andreas Bjurström & Merritt Polk, 2011. "Climate change and interdisciplinarity: a co-citation analysis of IPCC Third Assessment Report," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(3), pages 525-550, June.
    14. Blázquez de Paz, Mario, 2018. "Electricity auctions in the presence of transmission constraints and transmission costs," Energy Economics, Elsevier, vol. 74(C), pages 605-627.
    15. Kwame Boamah‐Addo & Tomasz J. Kozubowski & Anna K. Panorska, 2023. "A discrete truncated Zipf distribution," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 156-187, May.
    16. Laura Tascón-González & Montserrat Ferrer-Julià & Eduardo García-Meléndez, 2024. "Methodological approach for mapping the flood physical vulnerability index with geographical open-source data: an example in a small-middle city (Ponferrada, Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4053-4081, March.
    17. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    18. Ming-Kuang Chung & Dau-Jye Lu & Bor-Wen Tsai & Kuei-Tien Chou, 2019. "Assessing Effectiveness of PPGIS on Protected Areas by Governance Quality: A Case Study of Community-Based Monitoring in Wu-Wei-Kang Wildlife Refuge, Taiwan," Sustainability, MDPI, vol. 11(15), pages 1-20, August.
    19. Dong, Zhengcheng & Tian, Meng & Liang, Jiaqi & Fang, Yanjun & Lu, Yuxin, 2019. "Research on the connection radius of dependency links in interdependent spatial networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 555-564.
    20. Mazur, Christoph & Hoegerle, Yannick & Brucoli, Maria & van Dam, Koen & Guo, Miao & Markides, Christos N. & Shah, Nilay, 2019. "A holistic resilience framework development for rural power systems in emerging economies," Applied Energy, Elsevier, vol. 235(C), pages 219-232.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:3:p:356-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.