IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v34y1987i5p739-751.html
   My bibliography  Save this article

Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date

Author

Listed:
  • Uttarayan Bagchi
  • Yih‐Long Chang
  • Robert S. Sullivan

Abstract

We consider a single‐machine scheduling problem in which all jobs have the same due date and penalties are assessed for both early and late completion of jobs. However, earliness and tardiness are penalized at different rates. The scheduling objective is to minimize either the weighted sum of absolute deviations (WSAD) or the weighted sum of squared deviations (WSSD). For each objective we consider two versions of the problem. In the unconstrained version an increase in the due date does not yield any further decrease in the objective function. We present a constructive algorithm for the unconstrained WSAD problem and show that this problem is equivalent to the two‐parallel, nonidentical machine, mean flow‐time problem. For the unconstrained WSSD and the constrained WSAD and WSSD problems we propose implicit enumeration procedures based on several dominance conditions. We also report on our computational experience with the enumeration procedures.

Suggested Citation

  • Uttarayan Bagchi & Yih‐Long Chang & Robert S. Sullivan, 1987. "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 739-751, October.
  • Handle: RePEc:wly:navres:v:34:y:1987:i:5:p:739-751
    DOI: 10.1002/1520-6750(198710)34:53.0.CO;2-3
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198710)34:53.0.CO;2-3
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198710)34:53.0.CO;2-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. S. Panwalkar & M. L. Smith & A. Seidmann, 1982. "Common Due Date Assignment to Minimize Total Penalty for the One Machine Scheduling Problem," Operations Research, INFORMS, vol. 30(2), pages 391-399, April.
    2. John J. Kanet, 1981. "Minimizing the average deviation of job completion times about a common due date," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(4), pages 643-651, December.
    3. Sankaran Lakshminarayan & Ram Lakshmanan & Robert L. Papineau & Rene Rochette, 1978. "Technical Note—Optimal Single-Machine Scheduling with Earliness and Tardiness Penalties," Operations Research, INFORMS, vol. 26(6), pages 1079-1082, December.
    4. Alan G. Merten & Mervin E. Muller, 1972. "Variance Minimization in Single Machine Sequencing Problems," Management Science, INFORMS, vol. 18(9), pages 518-528, May.
    5. Jeffrey B. Sidney, 1977. "Optimal Single-Machine Scheduling with Earliness and Tardiness Penalties," Operations Research, INFORMS, vol. 25(1), pages 62-69, February.
    6. Samuel Eilon & I. G. Chowdhury, 1977. "Minimising Waiting Time Variance in the Single Machine Problem," Management Science, INFORMS, vol. 23(6), pages 567-575, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    2. Pereira, Jordi & Vásquez, Óscar C., 2017. "The single machine weighted mean squared deviation problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 515-529.
    3. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1994. "Due‐date assignment and early/tardy scheduling on identical parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 17-32, February.
    4. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    5. Sabuncuoglu, Ihsan & Lejmi, Tahar, 1999. "Scheduling for non regular performance measure under the due window approach," Omega, Elsevier, vol. 27(5), pages 555-568, October.
    6. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    7. Adamopoulos, George I. & Pappis, Costas P., 1996. "A fuzzy-linguistic approach to a multi-criteria sequencing problem," European Journal of Operational Research, Elsevier, vol. 92(3), pages 628-636, August.
    8. Xia, Yu & Chen, Bintong & Yue, Jinfeng, 2008. "Job sequencing and due date assignment in a single machine shop with uncertain processing times," European Journal of Operational Research, Elsevier, vol. 184(1), pages 63-75, January.
    9. John J. Clifford & Marc E. Posner, 2000. "High Multiplicity in Earliness-Tardiness Scheduling," Operations Research, INFORMS, vol. 48(5), pages 788-800, October.
    10. Wlodzimierz Szwarc, 1993. "Adjacent orderings in single‐machine scheduling with earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(2), pages 229-243, March.
    11. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    12. Adamopoulos, George I. & Pappis, Costas P., 1998. "Scheduling under a common due-data on parallel unrelated machines," European Journal of Operational Research, Elsevier, vol. 105(3), pages 494-501, March.
    13. Ventura, Jose A. & Radhakrishnan, Sanjay, 2003. "Single machine scheduling with symmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 144(3), pages 598-612, February.
    14. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    15. Li, Lei & Fonseca, Daniel J. & Chen, Der-San, 2006. "Earliness-tardiness production planning for just-in-time manufacturing: A unifying approach by goal programming," European Journal of Operational Research, Elsevier, vol. 175(1), pages 508-515, November.
    16. Sridharan, V. & Zhou, Z., 1996. "A decision theory based scheduling procedure for single-machine weighted earliness and tardiness problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 292-301, October.
    17. Alidaee, Bahram & Dragan, Irinel, 1997. "A note on minimizing the weighted sum of tardy and early completion penalties in a single machine: A case of small common due date," European Journal of Operational Research, Elsevier, vol. 96(3), pages 559-563, February.
    18. Yue, Jinfeng & Wang, Min-Chiang & Chen, Bintong, 2007. "Mean-range based distribution-free procedures to minimize "overage" and "underage" costs," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1103-1116, January.
    19. Cai, X. & Lum, V. Y. S. & Chan, J. M. T., 1997. "Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 98(1), pages 154-168, April.
    20. Enrique Gerstl & Gur Mosheiov, 2014. "Single machine just‐in‐time scheduling problems with two competing agents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(1), pages 1-16, February.
    21. Gerhard J. Woeginger, 1999. "An Approximation Scheme for Minimizing Agreeably Weighted Variance on a Single Machine," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 211-216, May.
    22. Zhi-Long Chen, 1997. "Scheduling with batch setup times and earliness-tardiness penalties," European Journal of Operational Research, Elsevier, vol. 96(3), pages 518-537, February.
    23. Yeong‐Dae Kim & Candace Arai Yano, 1994. "Minimizing mean tardiness and earliness in single‐machine scheduling problems with unequal due dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(7), pages 913-933, December.
    24. X. Cai & S. Zhou, 1997. "Scheduling stochastic jobs with asymmetric earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(6), pages 531-557, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Steve Davis & John J. Kanet, 1993. "Single‐machine scheduling with early and tardy completion costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 85-101, February.
    2. Michael C. Ferris & Milan Vlach, 1992. "Scheduling with earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 229-245, March.
    3. Chung‐Lun Li & T. C. E. Cheng, 1994. "The parallel machine min‐max weighted absolute lateness scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 33-46, February.
    4. Gur Mosheiov, 2000. "Minimizing mean absolute deviation of job completion times from the mean completion time," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(8), pages 657-668, December.
    5. Joseph Y.‐T. Leung, 2002. "A dual criteria sequencing problem with earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(4), pages 422-431, June.
    6. Yeong‐Dae Kim & Candace Arai Yano, 1994. "Minimizing mean tardiness and earliness in single‐machine scheduling problems with unequal due dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(7), pages 913-933, December.
    7. Soroush, H. M., 1999. "Sequencing and due-date determination in the stochastic single machine problem with earliness and tardiness costs," European Journal of Operational Research, Elsevier, vol. 113(2), pages 450-468, March.
    8. V. Rajendra Prasad & D. K. Manna, 1997. "Minimization of expected variance of completion times on single machine for stochastic jobs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 97-108, February.
    9. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    10. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    11. Y. P. Aneja & S. N. Kabadi & A. Nagar, 1998. "Minimizing weighted mean absolute deviation of flow times in single machine systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 297-311, April.
    12. Nasini, Stefano & Nessah, Rabia, 2022. "A multi-machine scheduling solution for homogeneous processing: Asymptotic approximation and applications," International Journal of Production Economics, Elsevier, vol. 251(C).
    13. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    14. G Mosheiov, 2008. "Minimizing total absolute deviation of job completion times: extensions to position-dependent processing times and parallel identical machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1422-1424, October.
    15. Awi Federgruen & Gur Mosheiov, 1997. "Heuristics for multimachine minmax scheduling problems with general earliness and tardiness costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 287-299, April.
    16. Nessah, Rabia & Chu, Chengbin, 2010. "A lower bound for weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1221-1226, December.
    17. T. C. E. Cheng & H. G. Kahlbacher, 1991. "A proof for the longest‐job‐first policy in one‐machine scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 715-720, October.
    18. Gajpal, Yuvraj & Rajendran, Chandrasekharan, 2006. "An ant-colony optimization algorithm for minimizing the completion-time variance of jobs in flowshops," International Journal of Production Economics, Elsevier, vol. 101(2), pages 259-272, June.
    19. G A Álvarez-Pérez & J L González-Velarde & J W Fowler, 2009. "Crossdocking— Just in Time scheduling: an alternative solution approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 554-564, April.
    20. Wang, Ji-Bo & Xia, Zun-Quan, 2007. "Single machine scheduling problems with controllable processing times and total absolute differences penalties," European Journal of Operational Research, Elsevier, vol. 177(1), pages 638-645, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:34:y:1987:i:5:p:739-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.