IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v207y2010i3p1221-1226.html
   My bibliography  Save this article

A lower bound for weighted completion time variance

Author

Listed:
  • Nessah, Rabia
  • Chu, Chengbin

Abstract

We consider a single machine scheduling problem to minimize the weighted completion time variance. This problem is known to be NP-hard. We propose a heuristic and a lower bound based on job splitting and the Viswanathkumar and Srinivasan procedure. The test on more than 2000 instances shows that this lower bound is very tight and the heuristic yields solutions very close to optimal ones since the gap between the solution given by the heuristic and the lower bound is very small.

Suggested Citation

  • Nessah, Rabia & Chu, Chengbin, 2010. "A lower bound for weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1221-1226, December.
  • Handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1221-1226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00407-8
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cai, X., 1996. "V-shape property for job sequences that minimize the expected completion time variance," European Journal of Operational Research, Elsevier, vol. 91(1), pages 118-123, May.
    2. Mittenthal, John & Raghavachari, M. & Rana, Arif I., 1995. "V- and GG-shaped properties for optimal single machine schedules for a class of non-separable penalty functions," European Journal of Operational Research, Elsevier, vol. 86(2), pages 262-269, October.
    3. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    4. Uttarayan Bagchi & Robert S. Sullivan & Yih-Long Chang, 1987. "Minimizing Mean Squared Deviation of Completion Times About a Common Due Date," Management Science, INFORMS, vol. 33(7), pages 894-906, July.
    5. Alan G. Merten & Mervin E. Muller, 1972. "Variance Minimization in Single Machine Sequencing Problems," Management Science, INFORMS, vol. 18(9), pages 518-528, May.
    6. A. Federgruen & G. Mosheiov, 1996. "Heuristics for Multimachine Scheduling Problems with Earliness and Tardiness Costs," Management Science, INFORMS, vol. 42(11), pages 1544-1555, November.
    7. De, Prabuddha & Ghosh, Jay B. & Wells, Charles E., 1996. "Scheduling to minimize the coefficient of variation," International Journal of Production Economics, Elsevier, vol. 44(3), pages 249-253, July.
    8. Cheng, Jinliang & Kubiak, Wieslaw, 2005. "A half-product based approximation scheme for agreeably weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 162(1), pages 45-54, April.
    9. Samuel Eilon & I. G. Chowdhury, 1977. "Minimising Waiting Time Variance in the Single Machine Problem," Management Science, INFORMS, vol. 23(6), pages 567-575, February.
    10. Kubiak, Wieslaw & Cheng, Jinliang & Kovalyov, Mikhail Y., 2002. "Fast fully polynomial approximation schemes for minimizing completion time variance," European Journal of Operational Research, Elsevier, vol. 137(2), pages 303-309, March.
    11. Manna, D. K. & Prasad, V. Rajendra, 1999. "Bounds for the position of the smallest job in completion time variance minimization," European Journal of Operational Research, Elsevier, vol. 114(2), pages 411-419, April.
    12. Linus Schrage, 1975. "Minimizing the Time-in-System Variance for a Finite Jobset," Management Science, INFORMS, vol. 21(5), pages 540-543, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:ejores:v:261:y:2017:i:2:p:515-529 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:207:y:2010:i:3:p:1221-1226. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.