IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i2p515-529.html
   My bibliography  Save this article

The single machine weighted mean squared deviation problem

Author

Listed:
  • Pereira, Jordi
  • Vásquez, Óscar C.

Abstract

This paper studies a single machine problem related to the Just-In-Time (JIT) production objective in which the goal is to minimize the sum of weighted mean squared deviation of the completion times with respect to a common due date. In order to solve the problem, several structural and dominance properties of the optimal solution are investigated. These properties are then integrated within a branch-and-cut approach to solve a time-indexed formulation of the problem. The results of a computational experiment with the proposed algorithm show that the method is able to optimally solve instances with up to 300 jobs within reduced running times, improving other integer programming approaches.

Suggested Citation

  • Pereira, Jordi & Vásquez, Óscar C., 2017. "The single machine weighted mean squared deviation problem," European Journal of Operational Research, Elsevier, vol. 261(2), pages 515-529.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:515-529
    DOI: 10.1016/j.ejor.2017.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717301807
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DYER, Martin E. & WOLSEY, Laurence A., 1990. "Formulating the single machine sequencing problem with release dates as a mixed integer program," LIDAM Reprints CORE 878, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    3. Nessah, Rabia & Chu, Chengbin, 2010. "A lower bound for weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1221-1226, December.
    4. Gerhard J. Woeginger, 1999. "An Approximation Scheme for Minimizing Agreeably Weighted Variance on a Single Machine," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 211-216, May.
    5. E. DYER, Martin & WOLSEY, Laurence A., 1990. "Formulating the single machine sequencing problem with release dates as a mixed integer program," LIDAM Reprints CORE 917, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Weng, Xiaohua & Ventura, Jose A., 1996. "Scheduling about a given common due date to minimize mean squared deviation of completion times," European Journal of Operational Research, Elsevier, vol. 88(2), pages 328-335, January.
    7. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    8. SOUSA, Jorge P. & WOLSEY, Laurence A., 1992. "A time indexed formulation of non-preemptive single machine scheduling problems," LIDAM Reprints CORE 984, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Srirangacharyulu, B. & Srinivasan, G., 2013. "An exact algorithm to minimize mean squared deviation of job completion times about a common due date," European Journal of Operational Research, Elsevier, vol. 231(3), pages 547-556.
    10. Jose A. Ventura & Michael X. Weng, 1995. "Minimizing Single-Machine Completion Time Variance," Management Science, INFORMS, vol. 41(9), pages 1448-1455, September.
    11. Uttarayan Bagchi & Robert S. Sullivan & Yih-Long Chang, 1987. "Minimizing Mean Squared Deviation of Completion Times About a Common Due Date," Management Science, INFORMS, vol. 33(7), pages 894-906, July.
    12. Alan G. Merten & Mervin E. Muller, 1972. "Variance Minimization in Single Machine Sequencing Problems," Management Science, INFORMS, vol. 18(9), pages 518-528, May.
    13. Louis-Philippe Bigras & Michel Gamache & Gilles Savard, 2008. "Time-Indexed Formulations and the Total Weighted Tardiness Problem," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 133-142, February.
    14. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    15. Hino, Celso M. & Ronconi, Debora P. & Mendes, Andre B., 2005. "Minimizing earliness and tardiness penalties in a single-machine problem with a common due date," European Journal of Operational Research, Elsevier, vol. 160(1), pages 190-201, January.
    16. Cheng, Jinliang & Kubiak, Wieslaw, 2005. "A half-product based approximation scheme for agreeably weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 162(1), pages 45-54, April.
    17. T. Badics & E. Boros, 1998. "Minimization of Half-Products," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 649-660, August.
    18. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    19. F Jin & J N D Gupta & S Song & C Wu, 2010. "Single machine scheduling with sequence-dependent family setups to minimize maximum lateness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(7), pages 1181-1189, July.
    20. Uttarayan Bagchi & Yih‐Long Chang & Robert S. Sullivan, 1987. "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 739-751, October.
    21. Rabia Nessah & Chengbin Chu, 2008. "A Lower Bound for the Weighted Completion Time Variance Problem," Working Papers 2008-ECO-16, IESEG School of Management, revised May 2010.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyang Wang & Peiji Shi & Jing Shi & Xuebin Zhang & Litang Yao, 2023. "Research on Land Use Pattern and Ecological Risk of Lanzhou–Xining Urban Agglomeration from the Perspective of Terrain Gradient," Land, MDPI, vol. 12(5), pages 1-20, April.
    2. Koulamas, Christos & Kyparisis, George J., 2023. "Two-stage no-wait proportionate flow shop scheduling with minimal service time variation and optional job rejection," European Journal of Operational Research, Elsevier, vol. 305(2), pages 608-616.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koulamas, Christos & Kyparisis, George J., 2023. "Two-stage no-wait proportionate flow shop scheduling with minimal service time variation and optional job rejection," European Journal of Operational Research, Elsevier, vol. 305(2), pages 608-616.
    2. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    3. Nessah, Rabia & Chu, Chengbin, 2010. "A lower bound for weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1221-1226, December.
    4. Natashia Boland & Riley Clement & Hamish Waterer, 2016. "A Bucket Indexed Formulation for Nonpreemptive Single Machine Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 14-30, February.
    5. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    6. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    7. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    8. Rachid Benmansour & Oliver Braun & Saïd Hanafi, 2019. "The single-processor scheduling problem with time restrictions: complexity and related problems," Journal of Scheduling, Springer, vol. 22(4), pages 465-471, August.
    9. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    10. Stéphane Dauzère-Pérès & Sigrid Lise Nonås, 2023. "An improved decision support model for scheduling production in an engineer-to-order manufacturer," 4OR, Springer, vol. 21(2), pages 247-300, June.
    11. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    12. Srirangacharyulu, B. & Srinivasan, G., 2013. "An exact algorithm to minimize mean squared deviation of job completion times about a common due date," European Journal of Operational Research, Elsevier, vol. 231(3), pages 547-556.
    13. Lotte Berghman & Roel Leus & Frits Spieksma, 2014. "Optimal solutions for a dock assignment problem with trailer transportation," Annals of Operations Research, Springer, vol. 213(1), pages 3-25, February.
    14. Cheng, Jinliang & Kubiak, Wieslaw, 2005. "A half-product based approximation scheme for agreeably weighted completion time variance," European Journal of Operational Research, Elsevier, vol. 162(1), pages 45-54, April.
    15. Kerem Bülbül & Philip Kaminsky & Candace Yano, 2004. "Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 407-445, April.
    16. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    17. Ng, C. T. & Cai, X. & Cheng, T. C. E., 1996. "A tight lower bound for the completion time variance problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 211-213, July.
    18. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    19. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    20. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:515-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.