IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v48y2000i5p788-800.html
   My bibliography  Save this article

High Multiplicity in Earliness-Tardiness Scheduling

Author

Listed:
  • John J. Clifford

    (Center for Naval Analyses, Alexandria, VA 22302)

  • Marc E. Posner

    (The Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, Columbus, Ohio 43210-1271)

Abstract

When a production shop has a large number of identical parts, the parts are often recorded by a part description and quantity. This differs from the type of description used by standard scheduling problems, which assume that all parts or jobs are unique. In high-multiplicity scheduling problems, identical jobs are encoded in an efficient format similar to that of the production shop. The input describes one of the jobs and the number of such identical jobs. We consider single-machine, high-multiplicity problems with earliness and tardiness weights. We investigate three categories of weights: unit, common, and job-specific. For the unit and common weights problems, a polynomial time algorithm is developed. The algorithm takes advantage of identical jobs and finds solutions faster than by standard methods.We provide a new method for creating a lower bound for the standard encoding of the job-specific weights problem, which is NP-complete. We disaggregate each job into identical sub jobs with unit processing times. Then, using high-multiplicity encoding for this disaggregated problem, we create a lower bound on the optimal objective function value of the original problem in polynomial time. Heuristic solutions are generated using a randomized rounding technique on the lower bound solution. These results are used in a branch-and-bound solution method. Analytical and computational results are presented. Our combination of disaggregation and high-multiplicity encoding provides a new method for creating lower bounds on the objective functions of NP-complete problems.

Suggested Citation

  • John J. Clifford & Marc E. Posner, 2000. "High Multiplicity in Earliness-Tardiness Scheduling," Operations Research, INFORMS, vol. 48(5), pages 788-800, October.
  • Handle: RePEc:inm:oropre:v:48:y:2000:i:5:p:788-800
    DOI: 10.1287/opre.48.5.788.12405
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.48.5.788.12405
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.48.5.788.12405?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dorit S. Hochbaum & Ron Shamir, 1991. "Strongly Polynomial Algorithms for the High Multiplicity Scheduling Problem," Operations Research, INFORMS, vol. 39(4), pages 648-653, August.
    2. A. Federgruen & G. Mosheiov, 1996. "Heuristics for Multimachine Scheduling Problems with Earliness and Tardiness Costs," Management Science, INFORMS, vol. 42(11), pages 1544-1555, November.
    3. Kenneth R. Baker & Gary D. Scudder, 1990. "Sequencing with Earliness and Tardiness Penalties: A Review," Operations Research, INFORMS, vol. 38(1), pages 22-36, February.
    4. Nicholas G. Hall & Marc E. Posner, 1991. "Earliness-Tardiness Scheduling Problems, I: Weighted Deviation of Completion Times About a Common Due Date," Operations Research, INFORMS, vol. 39(5), pages 836-846, October.
    5. Uttarayan Bagchi & Yih‐Long Chang & Robert S. Sullivan, 1987. "Minimizing absolute and squared deviations of completion times with different earliness and tardiness penalties and a common due date," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 739-751, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Brauner & Y. Crama & A. Grigoriev & J. Klundert, 2005. "A Framework for the Complexity of High-Multiplicity Scheduling Problems," Journal of Combinatorial Optimization, Springer, vol. 9(3), pages 313-323, May.
    2. Cheng, T.C.E. & Shafransky, Y. & Ng, C.T., 2016. "An alternative approach for proving the NP-hardness of optimization problems," European Journal of Operational Research, Elsevier, vol. 248(1), pages 52-58.
    3. Alexander Grigoriev & Vincent J. Kreuzen & Tim Oosterwijk, 2021. "Cyclic lot-sizing problems with sequencing costs," Journal of Scheduling, Springer, vol. 24(2), pages 123-135, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    2. Cai, X. & Lum, V. Y. S. & Chan, J. M. T., 1997. "Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 98(1), pages 154-168, April.
    3. Mosheiov, Gur & Shadmon, Michal, 2001. "Minmax earliness-tardiness costs with unit processing time jobs," European Journal of Operational Research, Elsevier, vol. 130(3), pages 638-652, May.
    4. Zhi-Long Chen, 1997. "Scheduling with batch setup times and earliness-tardiness penalties," European Journal of Operational Research, Elsevier, vol. 96(3), pages 518-537, February.
    5. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    6. X. Cai & S. Zhou, 1997. "Scheduling stochastic jobs with asymmetric earliness and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(6), pages 531-557, September.
    7. Chen, Zhi-Long & Lee, Chung-Yee, 2002. "Parallel machine scheduling with a common due window," European Journal of Operational Research, Elsevier, vol. 136(3), pages 512-527, February.
    8. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    9. Sridharan, V. & Zhou, Z., 1996. "A decision theory based scheduling procedure for single-machine weighted earliness and tardiness problems," European Journal of Operational Research, Elsevier, vol. 94(2), pages 292-301, October.
    10. Alidaee, Bahram & Dragan, Irinel, 1997. "A note on minimizing the weighted sum of tardy and early completion penalties in a single machine: A case of small common due date," European Journal of Operational Research, Elsevier, vol. 96(3), pages 559-563, February.
    11. Srirangacharyulu, B. & Srinivasan, G., 2013. "An exact algorithm to minimize mean squared deviation of job completion times about a common due date," European Journal of Operational Research, Elsevier, vol. 231(3), pages 547-556.
    12. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1994. "Due‐date assignment and early/tardy scheduling on identical parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 17-32, February.
    13. Li, Y. & Ip, W. H. & Wang, D. W., 1998. "Genetic algorithm approach to earliness and tardiness production scheduling and planning problem," International Journal of Production Economics, Elsevier, vol. 54(1), pages 65-76, January.
    14. Ventura, Jose A. & Radhakrishnan, Sanjay, 2003. "Single machine scheduling with symmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 144(3), pages 598-612, February.
    15. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    16. Chung‐Lun Li & Edward C. Sewell & T. C. E. Cheng, 1995. "Scheduling to minimize release‐time resource consumption and tardiness penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(6), pages 949-966, September.
    17. Xia, Yu & Chen, Bintong & Yue, Jinfeng, 2008. "Job sequencing and due date assignment in a single machine shop with uncertain processing times," European Journal of Operational Research, Elsevier, vol. 184(1), pages 63-75, January.
    18. Awi Federgruen & Gur Mosheiov, 1993. "Simultaneous optimization of efficiency and performance balance measures in single‐machine scheduling problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(7), pages 951-970, December.
    19. Kerem Bülbül & Safia Kedad-Sidhoum & Halil Şen, 2019. "Single-machine common due date total earliness/tardiness scheduling with machine unavailability," Journal of Scheduling, Springer, vol. 22(5), pages 543-565, October.
    20. Ramon Alvarez-Valdes & Enric Crespo & Jose Tamarit & Fulgencia Villa, 2012. "Minimizing weighted earliness–tardiness on a single machine with a common due date using quadratic models," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 754-767, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:48:y:2000:i:5:p:788-800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.