IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v34y2010i4p266-274.html
   My bibliography  Save this article

Climate protection and motor vehicle regulations: Evaluation of motor vehicle regulations in China in the context of greenhouse gas management

Author

Listed:
  • Mingde Cao
  • Yixiang Xu

Abstract

Climate change requires a re‐evaluation of the regulations pertaining to motor vehicles from the perspective of greenhouse gas (GHG) management. This article evaluates the regulations of motor vehicles in China from that perspective. Technology‐based regulations on motor vehicles play an important role in reducing GHG emissions. However, technology‐based regulations are not likely to be sufficient to achieve effective GHG management. Non‐technology‐based regulations can influence the behaviour of citizens and promote climate‐friendly transport modes. They can contribute significantly to the mitigation of GHG. In China, both the regulations on automobile ownership and those on automobile utilization should be adopted in order for the country to avoid being locked into an unsustainable transportation system. Regulations to promote public transport and non‐motorized transport modes should be introduced as early as possible.

Suggested Citation

  • Mingde Cao & Yixiang Xu, 2010. "Climate protection and motor vehicle regulations: Evaluation of motor vehicle regulations in China in the context of greenhouse gas management," Natural Resources Forum, Blackwell Publishing, vol. 34(4), pages 266-274, November.
  • Handle: RePEc:wly:natres:v:34:y:2010:i:4:p:266-274
    DOI: 10.1111/j.1477-8947.2010.01311.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1477-8947.2010.01311.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1477-8947.2010.01311.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cherry, Christopher R. & Weinert, Jonathan X. & Yang, Xinmiao, 2009. "Comparative Environmental Impacts of Electric Bikes in China," Institute of Transportation Studies, Working Paper Series qt16k918sh, Institute of Transportation Studies, UC Davis.
    2. Yan, Xiaoyu & Crookes, Roy J., 2009. "Reduction potentials of energy demand and GHG emissions in China's road transport sector," Energy Policy, Elsevier, vol. 37(2), pages 658-668, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    2. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    3. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    4. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    5. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    6. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    7. Zhang, Yong & Yu, Yifeng & Zou, Bai, 2011. "Analyzing public awareness and acceptance of alternative fuel vehicles in China: The case of EV," Energy Policy, Elsevier, vol. 39(11), pages 7015-7024.
    8. Zhibin Li & Wei Wang & Chen Yang & Haoyang Ding, 2017. "Bicycle mode share in China: a city-level analysis of long term trends," Transportation, Springer, vol. 44(4), pages 773-788, July.
    9. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    10. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    11. Jialin Liu & Yi Zhu & Qun Zhang & Fangyan Cheng & Xi Hu & Xinhong Cui & Lang Zhang & Zhenglin Sun, 2020. "Transportation Carbon Emissions from a Perspective of Sustainable Development in Major Cities of Yangtze River Delta, China," Sustainability, MDPI, vol. 13(1), pages 1-18, December.
    12. Rui Wang, 2011. "Environmental and resource sustainability of Chinese cities: A review of issues, policies, practices and effects," Natural Resources Forum, Blackwell Publishing, vol. 35(2), pages 112-121, May.
    13. Kishimoto, Paul N. & Zhang, Da & Zhang, Xiliang & Karplus, Valerie J., 2013. "Modeling regional transportation demand in China and the impacts of a national carbon constraint," Conference papers 332390, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Yuniaristanto, & Sutopo, Wahyudi & Hisjam, Muhammad & Wicaksono, Hendro, 2024. "Estimating the market share of electric motorcycles: A system dynamics approach with the policy mix and sustainable life cycle costs," Energy Policy, Elsevier, vol. 195(C).
    15. Ratanavaraha, Vatanavongs & Jomnonkwao, Sajjakaj, 2015. "Trends in Thailand CO2 emissions in the transportation sector and Policy Mitigation," Transport Policy, Elsevier, vol. 41(C), pages 136-146.
    16. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    17. Lijun Zhang & Caiyun Kou & Ji Zheng & Yu Li, 2018. "Decoupling Analysis of CO 2 Emissions in Transportation Sector from Economic Growth during 1995–2015 for Six Cities in Hebei, China," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    18. Elettra Agliardi & Mehmet Pinar & Thanasis Stengos, 2013. "A New Index of Environmental Quality Based on Greenhouse Gas Emissions," Working Paper series 12_13, Rimini Centre for Economic Analysis.
    19. Ba Hung, Nguyen & Jaewon, Sung & Lim, Ocktaeck, 2017. "A study of the effects of input parameters on the dynamics and required power of an electric bicycle," Applied Energy, Elsevier, vol. 204(C), pages 1347-1362.
    20. Cherry, Christopher R. & Yang, Hongtai & Jones, Luke R. & He, Min, 2016. "Dynamics of electric bike ownership and use in Kunming, China," Transport Policy, Elsevier, vol. 45(C), pages 127-135.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:34:y:2010:i:4:p:266-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.