Interpreting the prediction results of the tree‐based gradient boosting models for financial distress prediction with an explainable machine learning approach
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2931
Download full text from publisher
References listed on IDEAS
- Andreou, Christoforos K. & Andreou, Panayiotis C. & Lambertides, Neophytos, 2021. "Financial distress risk and stock price crashes," Journal of Corporate Finance, Elsevier, vol. 67(C).
- Liang, Deron & Tsai, Chih-Fong & Lu, Hung-Yuan (Richard) & Chang, Li-Shin, 2020. "Combining corporate governance indicators with stacking ensembles for financial distress prediction," Journal of Business Research, Elsevier, vol. 120(C), pages 137-146.
- Hernandez Tinoco, Mario & Holmes, Phil & Wilson, Nick, 2018. "Polytomous response financial distress models: The role of accounting, market and macroeconomic variables," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 276-289.
- Liu, Bai & Ju, Tao & Bai, Min & Yu, Chia-Feng (Jeffrey), 2021. "Imitative innovation and financial distress risk: The moderating role of executive foreign experience," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 526-548.
- ElBannan, Mona A., 2021. "On the prediction of financial distress in emerging markets: What matters more? Empirical evidence from Arab spring countries," Emerging Markets Review, Elsevier, vol. 47(C).
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023.
"Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach,"
Journal of International Economics, Elsevier, vol. 145(C).
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kang, Miao & Kapadia, Sujit & Simsek, Özgür, 2020. "Credit growth, the yield curve and financial crisis prediction: evidence from a machine learning approach," Bank of England working papers 848, Bank of England.
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2021. "Credit growth, the yield curve and financial crisis prediction: evidence from a machine learning approach," Working Paper Series 2614, European Central Bank.
- Tsai, Chih-Fong & Sue, Kuen-Liang & Hu, Ya-Han & Chiu, Andy, 2021. "Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction," Journal of Business Research, Elsevier, vol. 130(C), pages 200-209.
- Li, Yuanhui & Li, Xiao & Xiang, Erwei & Geri Djajadikerta, Hadrian, 2020. "Financial distress, internal control, and earnings management: Evidence from China," Journal of Contemporary Accounting and Economics, Elsevier, vol. 16(3).
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- García, C. José & Herrero, Begoña, 2021. "Female directors, capital structure, and financial distress," Journal of Business Research, Elsevier, vol. 136(C), pages 592-601.
- Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
- Barbara Jarmulska, 2022.
"Random forest versus logit models: Which offers better early warning of fiscal stress?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 455-490, April.
- Jarmulska, Barbara, 2020. "Random forest versus logit models: which offers better early warning of fiscal stress?," Working Paper Series 2408, European Central Bank.
- Lanbiao Liu & Chen Chen & Bo Wang, 2022. "Predicting financial crises with machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 871-910, August.
- Mai, Feng & Tian, Shaonan & Lee, Chihoon & Ma, Ling, 2019. "Deep learning models for bankruptcy prediction using textual disclosures," European Journal of Operational Research, Elsevier, vol. 274(2), pages 743-758.
- Mangena, Musa & Priego, Alba Maria & Manzaneque, Montserrat, 2020. "Bank power, block ownership, boards and financial distress likelihood: An investigation of Spanish listed firms," Journal of Corporate Finance, Elsevier, vol. 64(C).
- Sami Ben Jabeur & Youssef Fahmi, 2018. "Forecasting financial distress for French firms: a comparative study," Empirical Economics, Springer, vol. 54(3), pages 1173-1186, May.
- Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
- Tanaka, Katsuyuki & Kinkyo, Takuji & Hamori, Shigeyuki, 2016. "Random forests-based early warning system for bank failures," Economics Letters, Elsevier, vol. 148(C), pages 118-121.
- Pham, Xuan T.T. & Ho, Tin H., 2021. "Using boosting algorithms to predict bank failure: An untold story," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 40-54.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Umair Bin Yousaf & Khalil Jebran & Irfan Ullah, 2024. "Corporate governance and financial distress: A review of the theoretical and empirical literature," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1627-1679, April.
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Lenka Papíková & Mário Papík, 2022. "Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 254-281, October.
- Sun, Xiaojun & Lei, Yalin, 2021. "Research on financial early warning of mining listed companies based on BP neural network model," Resources Policy, Elsevier, vol. 73(C).
- Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
- Vladislav V. Afanasev & Yulia A. Tarasova, 2022. "Default Prediction for Housing and Utilities Management Firms Using Non-Financial Data," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 6, pages 91-110, December.
- Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
- Jun Hyeok Choi & Saerona Kim & Dong-Hoon Yang & Kwanghee Cho, 2021. "Can Corporate Social Responsibility Decrease the Negative Influence of Financial Distress on Accounting Quality?," Sustainability, MDPI, vol. 13(19), pages 1-19, October.
- Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2022. "Does board committee independence affect financial distress likelihood? A comparison of China with the UK," Asia Pacific Journal of Management, Springer, vol. 39(2), pages 723-761, June.
- Khaled Halteh & Kuldeep Kumar & Adrian Gepp, 2018. "Using Cutting-Edge Tree-Based Stochastic Models to Predict Credit Risk," Risks, MDPI, vol. 6(2), pages 1-13, May.
- Jie Sun & Mengjie Zhou & Wenguo Ai & Hui Li, 2019. "Dynamic prediction of relative financial distress based on imbalanced data stream: from the view of one industry," Risk Management, Palgrave Macmillan, vol. 21(4), pages 215-242, December.
- Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
- Asyrofa Rahmi & Hung-Yuan Lu & Deron Liang & Dinda Novitasari & Chih-Fong Tsai, 2023. "Role of Comprehensive Income in Predicting Bankruptcy," Computational Economics, Springer;Society for Computational Economics, vol. 62(2), pages 689-720, August.
- Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
- Paras Arora & Suman Saurabh, 2022. "Predicting distress: a post Insolvency and Bankruptcy Code 2016 analysis," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(3), pages 604-622, July.
- Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
- Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
- Barboza, Flavio & Altman, Edward, 2024. "Predicting financial distress in Latin American companies: A comparative analysis of logistic regression and random forest models," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:5:p:1112-1137. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.