IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i3ne2661.html
   My bibliography  Save this article

Modeling short‐ranged dependence in block extrema with application to polar temperature data

Author

Listed:
  • Brook T. Russell
  • Whitney K. Huang

Abstract

The block maxima approach is an important method in univariate extreme value analysis. While assuming that block maxima are independent results in straightforward analysis, the resulting inferences maybe invalid when a series of block maxima exhibits dependence. We propose a model, based on a first‐order Markov assumption, that incorporates dependence between successive block maxima through the use of a bivariate logistic dependence structure while maintaining generalized extreme value (GEV) marginal distributions. Modeling dependence in this manner allows us to better estimate extreme quantiles when block maxima exhibit short‐ranged dependence. We demonstrate via a simulation study that our first‐order Markov GEV model performs well when successive block maxima are dependent, while still being reasonably robust when maxima are independent. We apply our method to two polar annual minimum air temperature data sets that exhibit short‐ranged dependence structures, and find that the proposed model yields modified estimates of high quantiles.

Suggested Citation

  • Brook T. Russell & Whitney K. Huang, 2021. "Modeling short‐ranged dependence in block extrema with application to polar temperature data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:3:n:e2661
    DOI: 10.1002/env.2661
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2661
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Brook T. Russell & Mark D. Risser & Richard L. Smith & Kenneth E. Kunkel, 2020. "Investigating the association between late spring Gulf of Mexico sea surface temperatures and U.S. Gulf Coast precipitation extremes with focus on Hurricane Harvey," Environmetrics, John Wiley & Sons, Ltd., vol. 31(2), March.
    3. Stuart G. Coles & Jonathan A. Tawn, 1996. "A Bayesian Analysis of Extreme Rainfall Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 463-478, December.
    4. Arnab Hazra & Brian J. Reich & Ana‐Maria Staicu, 2020. "A multivariate spatial skew‐t process for joint modeling of extreme precipitation indexes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(3), May.
    5. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    6. Stuart G. Coles & Jonathan A. Tawn, 1994. "Statistical Methods for Multivariate Extremes: An Application to Structural Design," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 1-31, March.
    7. Masaaki Sibuya, 1959. "Bivariate extreme statistics, I," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 11(2), pages 195-210, June.
    8. Whitney K. Huang & Douglas W. Nychka & Hao Zhang, 2019. "Estimating precipitation extremes using the log‐histospline," Environmetrics, John Wiley & Sons, Ltd., vol. 30(4), June.
    9. L. Zhu & X. Liu & R. Lund, 2019. "A likelihood for correlated extreme series," Environmetrics, John Wiley & Sons, Ltd., vol. 30(4), June.
    10. John O'Sullivan & Conor Sweeney & Andrew C. Parnell, 2020. "Bayesian spatial extreme value analysis of maximum temperatures in County Dublin, Ireland," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    11. N. Beck & C. Genest & J. Jalbert & M. Mailhot, 2020. "Predicting extreme surges from sparse data using a copula‐based hierarchical Bayesian spatial model," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    12. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    13. Einmahl, J.H.J. & de Haan, L.F.M. & Zhou, C., 2014. "Statistics of Heteroscedastic Extremes," Other publications TiSEM 19952ae4-25ff-4e1b-8627-d, Tilburg University, School of Economics and Management.
    14. John H. J. Einmahl & Laurens Haan & Chen Zhou, 2016. "Statistics of heteroscedastic extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 31-51, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    2. Hou, Yanxi & Leng, Xuan & Peng, Liang & Zhou, Yinggang, 2024. "Panel quantile regression for extreme risk," Journal of Econometrics, Elsevier, vol. 240(1).
    3. Jacek Wójcik, 2017. "Consequences of the Cognitive Digital Divide on the Consumer Market," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 44, pages 69-80.
    4. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    5. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    6. Moore, Kyle & Zhou, Chen, 2014. "The determinants of systemic importance," LSE Research Online Documents on Economics 59289, London School of Economics and Political Science, LSE Library.
    7. Einmahl, John & He, Y., 2020. "Unified Extreme Value Estimation for Heterogeneous Data," Other publications TiSEM dfe6c38c-823b-4394-b4fd-a, Tilburg University, School of Economics and Management.
    8. Einmahl, John & Ferreira, Ana & de Haan, Laurens & Neves, C. & Zhou, C., 2020. "Spatial Dependence and Space-Time Trend in Extreme Events," Other publications TiSEM ae5818cd-f071-4275-9577-d, Tilburg University, School of Economics and Management.
    9. Robert, Christian Y., 2022. "Testing for changes in the tail behavior of Brown–Resnick Pareto processes," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 312-368.
    10. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    11. Divan A. Burger & Sean van der Merwe & Emmanuel Lesaffre & Peter C. le Roux & Morgan J. Raath‐Krüger, 2023. "A robust mixed‐effects parametric quantile regression model for continuous proportions: Quantifying the constraints to vitality in cushion plants," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(4), pages 444-470, November.
    12. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    13. Andrea Kunnert, 2016. "Leistbarkeit von Wohnen in Österreich. Operationalisierung und demographische Komponenten," WIFO Studies, WIFO, number 58932.
    14. Brendan Bradley & Murad Taqqu, 2004. "Asset allocation when guarding against catastrophic losses: a comparison between the structure variable and joint probability methods," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 619-636.
    15. Viola Merhof & Thorsten Meiser, 2023. "Dynamic Response Strategies: Accounting for Response Process Heterogeneity in IRTree Decision Nodes," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1354-1380, December.
    16. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    17. Nicoletti, Giuseppe & von Rueden, Christina & Andrews, Dan, 2020. "Digital technology diffusion: A matter of capabilities, incentives or both?," European Economic Review, Elsevier, vol. 128(C).
    18. Lu, Ying & Prato, Carlo G. & Sipe, Neil & Kimpton, Anthony & Corcoran, Jonathan, 2022. "The role of household modality style in first and last mile travel mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 95-109.
    19. Ahmed, Hanan, 2022. "Extreme value statistics using related variables," Other publications TiSEM 246f0f13-701c-4c0d-8e09-e, Tilburg University, School of Economics and Management.
    20. Joos, Michael & Staffell, Iain, 2018. "Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 86(C), pages 45-65.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:3:n:e2661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.