Author
Abstract
Environmental contours are often used in engineering applications to describe risky combinations of variables according to some definition of an exceedance probability. These contours can be used to both understand multivariate extreme events in environmental processes and mitigate against their effects, e.g. in the design of structures. Such ideas are also useful in other disciplines, with the types of extreme events of interest depending on the context. Despite clear connections with extreme value modelling, much of this methodology has so far not been exploited in the estimation of environmental contours; in this work, we provide a way to unify these areas. We focus on the bivariate case, introducing two new definitions of environmental contours. We develop techniques for their inference which exploit a non-standard radial and angular decomposition of the variables, building on previous work for estimating limit sets. Specifically, we model the upper tails of the radial distribution using a generalised Pareto distribution, with adaptable smoothing of the parameters of this distribution. Our methods work equally well for asymptotically independent and asymptotically dependent variables, so do not require us to distinguish between different joint tail forms. Simulations demonstrate reasonable success of the estimation procedure, and we apply our approach to an air pollution data set, which is of interest in the context of environmental impacts on health. Supplementary materials accompanying this paper appear online.
Suggested Citation
Emma S. Simpson & Jonathan A. Tawn, 2025.
"Inference for New Environmental Contours Using Extreme Value Analysis,"
Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 638-662, September.
Handle:
RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00612-2
DOI: 10.1007/s13253-024-00612-2
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00612-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.