IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i3d10.1007_s13253-024-00612-2.html
   My bibliography  Save this article

Inference for New Environmental Contours Using Extreme Value Analysis

Author

Listed:
  • Emma S. Simpson

    (University College London)

  • Jonathan A. Tawn

    (Lancaster University)

Abstract

Environmental contours are often used in engineering applications to describe risky combinations of variables according to some definition of an exceedance probability. These contours can be used to both understand multivariate extreme events in environmental processes and mitigate against their effects, e.g. in the design of structures. Such ideas are also useful in other disciplines, with the types of extreme events of interest depending on the context. Despite clear connections with extreme value modelling, much of this methodology has so far not been exploited in the estimation of environmental contours; in this work, we provide a way to unify these areas. We focus on the bivariate case, introducing two new definitions of environmental contours. We develop techniques for their inference which exploit a non-standard radial and angular decomposition of the variables, building on previous work for estimating limit sets. Specifically, we model the upper tails of the radial distribution using a generalised Pareto distribution, with adaptable smoothing of the parameters of this distribution. Our methods work equally well for asymptotically independent and asymptotically dependent variables, so do not require us to distinguish between different joint tail forms. Simulations demonstrate reasonable success of the estimation procedure, and we apply our approach to an air pollution data set, which is of interest in the context of environmental impacts on health. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Emma S. Simpson & Jonathan A. Tawn, 2025. "Inference for New Environmental Contours Using Extreme Value Analysis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(3), pages 638-662, September.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00612-2
    DOI: 10.1007/s13253-024-00612-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-024-00612-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-024-00612-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Balkema, A.A. & Embrechts, P. & Nolde, N., 2010. "Meta densities and the shape of their sample clouds," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1738-1754, August.
    2. Nolde, Natalia, 2014. "Geometric interpretation of the residual dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 85-95.
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    4. Benjamin D. Youngman, 2019. "Generalized Additive Models for Exceedances of High Thresholds With an Application to Return Level Estimation for U.S. Wind Gusts," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1865-1879, October.
    5. Caroline Keef & Jonathan A. Tawn & Rob Lamb, 2013. "Estimating the probability of widespread flood events," Environmetrics, John Wiley & Sons, Ltd., vol. 24(1), pages 13-21, February.
    6. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    7. Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M., 2011. "Estimation of extreme risk regions under multivariate regular variation," Other publications TiSEM b7a72a8d-f9bc-4129-ae9b-a, Tilburg University, School of Economics and Management.
    8. Janet E. Heffernan & Jonathan A. Tawn, 2004. "A conditional approach for multivariate extreme values (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 497-546, August.
    9. Stuart G. Coles & Jonathan A. Tawn, 1994. "Statistical Methods for Multivariate Extremes: An Application to Structural Design," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 1-31, March.
    10. Paul J. Northrop & Nicolas Attalides & Philip Jonathan, 2017. "Cross-validatory extreme value threshold selection and uncertainty with application to ocean storm severity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 93-120, January.
    11. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Rejoinder to ‘multivariate functional outlier detection’," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 269-277, July.
    12. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    2. Simpson, Emma S. & Wadsworth, Jennifer L. & Tawn, Jonathan A., 2021. "A geometric investigation into the tail dependence of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Murphy-Barltrop, C.J.R. & Wadsworth, J.L., 2024. "Modelling non-stationarity in asymptotically independent extremes," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    4. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    5. Richards, Jordan & Tawn, Jonathan A., 2022. "On the tail behaviour of aggregated random variables," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    6. Liu, Y. & Tawn, J.A., 2014. "Self-consistent estimation of conditional multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 19-35.
    7. Cooley, Daniel & Davis, Richard A. & Naveau, Philippe, 2010. "The pairwise beta distribution: A flexible parametric multivariate model for extremes," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2103-2117, October.
    8. Thomas O’Shea & Dónall Cross & Mark G. Macklin & Chris Thomas, 2025. "Advancing Sustainability and Resilience in Vulnerable Rural and Coastal Communities Facing Environmental Change with a Regionally Focused Composite Mapping Framework," Sustainability, MDPI, vol. 17(17), pages 1-25, September.
    9. Refk Selmi & Christos Kollias & Stephanos Papadamou & Rangan Gupta, 2017. "A Copula-Based Quantile-on-Quantile Regression Approach to Modeling Dependence Structure between Stock and Bond Returns: Evidence from Historical Data of India, South Africa, UK and US," Working Papers 201747, University of Pretoria, Department of Economics.
    10. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    11. Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
    12. Archimbaud, Aurore & Boulfani, Feriel & Gendre, Xavier & Nordhausen, Klaus & Ruiz-Gazen, Anne & Virta, Joni, 2025. "ICS for multivariate functional anomaly detection with applications to predictive maintenance and quality control," Econometrics and Statistics, Elsevier, vol. 33(C), pages 282-303.
    13. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    14. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    15. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    16. Brendan Bradley & Murad Taqqu, 2004. "Asset allocation when guarding against catastrophic losses: a comparison between the structure variable and joint probability methods," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 619-636.
    17. Di Bernardino, Elena & Maume-Deschamps, Véronique & Prieur, Clémentine, 2013. "Estimating a bivariate tail: A copula based approach," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 81-100.
    18. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    19. Moritz Herrmann & Fabian Scheipl, 2021. "A Geometric Perspective on Functional Outlier Detection," Stats, MDPI, vol. 4(4), pages 1-41, November.
    20. Dai, Wenlin & Mrkvička, Tomáš & Sun, Ying & Genton, Marc G., 2020. "Functional outlier detection and taxonomy by sequential transformations," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:3:d:10.1007_s13253-024-00612-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.