IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i4d10.1007_s11336-023-09901-0.html
   My bibliography  Save this article

Dynamic Response Strategies: Accounting for Response Process Heterogeneity in IRTree Decision Nodes

Author

Listed:
  • Viola Merhof

    (University of Mannheim)

  • Thorsten Meiser

    (University of Mannheim)

Abstract

It is essential to control self-reported trait measurements for response style effects to ensure a valid interpretation of estimates. Traditional psychometric models facilitating such control consider item responses as the result of two kinds of response processes—based on the substantive trait, or based on response styles—and they assume that both of these processes have a constant influence across the items of a questionnaire. However, this homogeneity over items is not always given, for instance, if the respondents’ motivation declines throughout the questionnaire so that heuristic responding driven by response styles may gradually take over from cognitively effortful trait-based responding. The present study proposes two dynamic IRTree models, which account for systematic continuous changes and additional random fluctuations of response strategies, by defining item position-dependent trait and response style effects. Simulation analyses demonstrate that the proposed models accurately capture dynamic trajectories of response processes, as well as reliably detect the absence of dynamics, that is, identify constant response strategies. The continuous version of the dynamic model formalizes the underlying response strategies in a parsimonious way and is highly suitable as a cognitive model for investigating response strategy changes over items. The extended model with random fluctuations of strategies can adapt more closely to the item-specific effects of different response processes and thus is a well-fitting model with high flexibility. By using an empirical data set, the benefits of the proposed dynamic approaches over traditional IRTree models are illustrated under realistic conditions.

Suggested Citation

  • Viola Merhof & Thorsten Meiser, 2023. "Dynamic Response Strategies: Accounting for Response Process Heterogeneity in IRTree Decision Nodes," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1354-1380, December.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-023-09901-0
    DOI: 10.1007/s11336-023-09901-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-023-09901-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-023-09901-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. De Boeck, Paul & Partchev, Ivailo, 2012. "IRTrees: Tree-Based Item Response Models of the GLMM Family," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(c01).
    3. Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 593-619, June.
    4. Elisabeth Deutskens & Ko de Ruyter & Martin Wetzels & Paul Oosterveld, 2004. "Response Rate and Response Quality of Internet-Based Surveys: An Experimental Study," Marketing Letters, Springer, vol. 15(1), pages 21-36, February.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    6. Anna DeCastellarnau, 2018. "A classification of response scale characteristics that affect data quality: a literature review," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1523-1559, July.
    7. Yuri Goegebeur & Paul Boeck & James Wollack & Allan Cohen, 2008. "A Speeded Item Response Model with Gradual Process Change," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 65-87, March.
    8. Can Shao & Jun Li & Ying Cheng, 2016. "Detection of Test Speededness Using Change-Point Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1118-1141, December.
    9. Esther Ulitzsch & Steffi Pohl & Lale Khorramdel & Ulf Kroehne & Matthias Davier, 2022. "Erratum to: A Response-Time-Based Latent Response Mixture Model for Identifying and Modeling Careless and Insufficient Effort Responding in Survey Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 798-798, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nana Kim & Daniel M. Bolt, 2024. "Evaluating Psychometric Differences Between Fast Versus Slow Responses on Rating Scale Items," Journal of Educational and Behavioral Statistics, , vol. 49(4), pages 565-594, August.
    2. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    3. Divan A. Burger & Sean van der Merwe & Emmanuel Lesaffre & Peter C. le Roux & Morgan J. Raath‐Krüger, 2023. "A robust mixed‐effects parametric quantile regression model for continuous proportions: Quantifying the constraints to vitality in cushion plants," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(4), pages 444-470, November.
    4. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    5. Kuan-Yu Jin & Yi-Jhen Wu & Hui-Fang Chen, 2022. "A New Multiprocess IRT Model With Ideal Points for Likert-Type Items," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 297-321, June.
    6. Yu-Wei Chang & Rung-Ching Tsai & Nan-Jung Hsu, 2014. "A Speeded Item Response Model: Leave the Harder till Later," Psychometrika, Springer;The Psychometric Society, vol. 79(2), pages 255-274, April.
    7. Liu, Qingyang & Huang, Xianzheng & Bai, Ray, 2024. "Bayesian modal regression based on mixture distributions," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
    8. Olbrich, Lukas & Sakshaug, Joseph W. & Lewandowski, Eric, 2024. "Evaluating methods to prevent and detect inattentive respondents in web surveys," SocArXiv py9gz, Center for Open Science.
    9. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    10. Alexandra M. Schmidt, 2022. "Discussion on “Spatial+: a novel approach to spatial confounding” by Emiko Dupont, Simon N. Wood, and Nicole H. Augustin," Biometrics, The International Biometric Society, vol. 78(4), pages 1300-1304, December.
    11. Quentin F. Gronau & Eric-Jan Wagenmakers & Daniel W. Heck & Dora Matzke, 2019. "A Simple Method for Comparing Complex Models: Bayesian Model Comparison for Hierarchical Multinomial Processing Tree Models Using Warp-III Bridge Sampling," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 261-284, March.
    12. Andrew M. Raim & Scott H. Holan & Jonathan R. Bradley & Christopher K. Wikle, 2021. "Spatio-temporal change of support modeling with R," Computational Statistics, Springer, vol. 36(1), pages 749-780, March.
    13. Sun-Joo Cho & Sarah Brown-Schmidt & Paul De Boeck & Jianhong Shen, 2020. "Modeling Intensive Polytomous Time-Series Eye-Tracking Data: A Dynamic Tree-Based Item Response Model," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 154-184, March.
    14. Dylan Molenaar & Paul Boeck, 2018. "Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times," Psychometrika, Springer;The Psychometric Society, vol. 83(2), pages 279-297, June.
    15. Brook T. Russell & Whitney K. Huang, 2021. "Modeling short‐ranged dependence in block extrema with application to polar temperature data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    16. Axel Finke & Ruth King & Alexandros Beskos & Petros Dellaportas, 2019. "Efficient Sequential Monte Carlo Algorithms for Integrated Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 204-224, June.
    17. Silvia Montagna & Vanessa Orani & Raffaele Argiento, 2021. "Bayesian isotonic logistic regression via constrained splines: an application to estimating the serve advantage in professional tennis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 573-604, June.
    18. White, Philip A. & Gelfand, Alan E. & Frye, Henry & Silander, John A., 2024. "Good modelling practice in ecology, the hierarchical Bayesian perspective," Ecological Modelling, Elsevier, vol. 496(C).
    19. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    20. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:4:d:10.1007_s11336-023-09901-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.