IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/128070.html
   My bibliography  Save this paper

A latent variable model with change-points and its application to time pressure effects in educational assessment

Author

Listed:
  • Wallin, Gabriel
  • Chen, Yunxiao
  • Lee, Yi-Hsuan
  • Li, Xiaoou

Abstract

Educational assessments are valuable tools for measuring student knowledge and skills, but their validity can be compromised when test takers exhibit changes in response behavior due to factors such as time pressure. To address this issue, we introduce a novel latent factor model with change-points for item response data, designed to detect and account for individual-level shifts in response patterns during testing. This model extends traditional item response theory (IRT) by incorporating person-specific change-points, which enables simultaneous estimation of item parameters, person latent traits, and the location of behavioral changes. We evaluate the proposed model through extensive simulation studies, which demonstrate its ability to accurately recover item parameters, change-point locations, and individual ability estimates under various conditions. Our findings show that accounting for change-points significantly reduces bias in ability estimates, particularly for respondents affected by time pressure. Application of the model to two real-world educational testing datasets reveals distinct patterns of change-point occurrence between high-stakes and lower-stakes tests, providing insights into how test-taking behavior evolves during the tests. This approach offers a more nuanced understanding of test-taking dynamics, with important implications for test design, scoring, and interpretation.

Suggested Citation

  • Wallin, Gabriel & Chen, Yunxiao & Lee, Yi-Hsuan & Li, Xiaoou, 2025. "A latent variable model with change-points and its application to time pressure effects in educational assessment," LSE Research Online Documents on Economics 128070, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:128070
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/128070/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wim van der Linden, 2007. "A Hierarchical Framework for Modeling Speed and Accuracy on Test Items," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 287-308, September.
    2. Lu, Zexian & Chen, Yunxiao & Li, Xiaoou, 2022. "Optimal parallel sequential change detection under generalized performance measures," LSE Research Online Documents on Economics 118348, London School of Economics and Political Science, LSE Library.
    3. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    4. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    5. Chen, Yunxiao & Li, Xiaoou, 2023. "Compound sequential change-point detection in parallel data streams," LSE Research Online Documents on Economics 111010, London School of Economics and Political Science, LSE Library.
    6. Paul Fearnhead & Guillem Rigaill, 2019. "Changepoint Detection in the Presence of Outliers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 169-183, January.
    7. Yuri Goegebeur & Paul Boeck & James Wollack & Allan Cohen, 2008. "A Speeded Item Response Model with Gradual Process Change," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 65-87, March.
    8. Can Shao & Jun Li & Ying Cheng, 2016. "Detection of Test Speededness Using Change-Point Analysis," Psychometrika, Springer;The Psychometric Society, vol. 81(4), pages 1118-1141, December.
    9. Chen, Yunxiao & Lee, Yi-Hsuan & Li, Xiaoou, 2022. "Item pool quality control in educational testing: change point model, compound risk, and sequential detection," LSE Research Online Documents on Economics 112498, London School of Economics and Political Science, LSE Library.
    10. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    11. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2005. "The Structural Break in the Equity Premium," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 181-191, April.
    12. Y. Mei, 2010. "Efficient scalable schemes for monitoring a large number of data streams," Biometrika, Biometrika Trust, vol. 97(2), pages 419-433.
    13. Ashish Sen & S. Srivastava, 1975. "On tests for detecting change in mean when variance is unknown," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 479-486, December.
    14. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    15. Gaetano Romano & Guillem Rigaill & Vincent Runge & Paul Fearnhead, 2022. "Detecting Abrupt Changes in the Presence of Local Fluctuations and Autocorrelated Noise," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 2147-2162, October.
    16. Yunxiao Chen & Yi-Hsuan Lee & Xiaoou Li, 2022. "Item Pool Quality Control in Educational Testing: Change Point Model, Compound Risk, and Sequential Detection," Journal of Educational and Behavioral Statistics, , vol. 47(3), pages 322-352, June.
    17. Chun Wang & Gongjun Xu & Zhuoran Shang, 2018. "A Two-Stage Approach to Differentiating Normal and Aberrant Behavior in Computer Based Testing," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 223-254, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sainan Xu & Jing Lu & Jiwei Zhang & Chun Wang & Gongjun Xu, 2024. "Optimizing Large-Scale Educational Assessment with a “Divide-and-Conquer” Strategy: Fast and Efficient Distributed Bayesian Inference in IRT Models," Psychometrika, Springer;The Psychometric Society, vol. 89(4), pages 1119-1147, December.
    2. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    3. Chen, Yunxiao & Lu, Yan & Moustaki, Irini, 2022. "Detection of two-way outliers in multivariate data and application to cheating detection in educational tests," LSE Research Online Documents on Economics 112499, London School of Economics and Political Science, LSE Library.
    4. Kang-Ping Lu & Shao-Tung Chang, 2023. "An Advanced Segmentation Approach to Piecewise Regression Models," Mathematics, MDPI, vol. 11(24), pages 1-23, December.
    5. Tariku Tesfaye Haile & Fenglin Tian & Ghada AlNemer & Boping Tian, 2024. "Multiscale Change Point Detection for Univariate Time Series Data with Missing Value," Mathematics, MDPI, vol. 12(20), pages 1-22, October.
    6. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    7. Wu Wang & Xuming He & Zhongyi Zhu, 2020. "Statistical inference for multiple change‐point models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1149-1170, December.
    8. Yang Liu & Weimeng Wang, 2024. "What Can We Learn from a Semiparametric Factor Analysis of Item Responses and Response Time? An Illustration with the PISA 2015 Data," Psychometrika, Springer;The Psychometric Society, vol. 89(2), pages 386-410, June.
    9. Kang-Ping Lu & Shao-Tung Chang, 2021. "Robust Algorithms for Change-Point Regressions Using the t -Distribution," Mathematics, MDPI, vol. 9(19), pages 1-28, September.
    10. Maheu, John M. & McCurdy, Thomas H., 2009. "How Useful are Historical Data for Forecasting the Long-Run Equity Return Distribution?," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 95-112.
    11. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    12. Andreï Kostyrka & Dmitry Malakhov, 2021. "Was there ever a shift: Empirical analysis of structural-shift tests for return volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 61, pages 110-139.
    13. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    14. Lu Shaochuan, 2023. "Scalable Bayesian Multiple Changepoint Detection via Auxiliary Uniformisation," International Statistical Review, International Statistical Institute, vol. 91(1), pages 88-113, April.
    15. Florian Pein & Hannes Sieling & Axel Munk, 2017. "Heterogeneous change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1207-1227, September.
    16. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    17. Yi-Hsuan Lee & Zhiliang Ying, 2015. "A Mixture Cure-Rate Model for Responses and Response Times in Time-Limit Tests," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 748-775, September.
    18. Viola Merhof & Thorsten Meiser, 2023. "Dynamic Response Strategies: Accounting for Response Process Heterogeneity in IRTree Decision Nodes," Psychometrika, Springer;The Psychometric Society, vol. 88(4), pages 1354-1380, December.
    19. Cho, Haeran & Fryzlewicz, Piotr, 2024. "Multiple change point detection under serial dependence: wild contrast maximisation and gappy Schwarz algorithm," LSE Research Online Documents on Economics 120085, London School of Economics and Political Science, LSE Library.
    20. Sebastian Opitz & Alexander Szimayer, 2018. "What drives flight to quality?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 529-571, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:128070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.