IDEAS home Printed from https://ideas.repec.org/a/wly/empleg/v16y2019i1p175-194.html
   My bibliography  Save this article

Accuracy and Fairness for Juvenile Justice Risk Assessments

Author

Listed:
  • Richard Berk

Abstract

Risk assessment algorithms used in criminal justice settings are often said to introduce “bias.” But such charges can conflate an algorithm's performance with bias in the data used to train the algorithm with bias in the actions undertaken with an algorithm's output. In this article, algorithms themselves are the focus. Tradeoffs between different kinds of fairness and between fairness and accuracy are illustrated using an algorithmic application to juvenile justice data. Given potential bias in training data, can risk assessment algorithms improve fairness and, if so, with what consequences for accuracy? Although statisticians and computer scientists can document the tradeoffs, they cannot provide technical solutions that satisfy all fairness and accuracy objectives. In the end, it falls to stakeholders to do the required balancing using legal and legislative procedures, just as it always has.

Suggested Citation

  • Richard Berk, 2019. "Accuracy and Fairness for Juvenile Justice Risk Assessments," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 16(1), pages 175-194, March.
  • Handle: RePEc:wly:empleg:v:16:y:2019:i:1:p:175-194
    DOI: 10.1111/jels.12206
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jels.12206
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jels.12206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard A. Berk & Susan B. Sorenson & Geoffrey Barnes, 2016. "Forecasting Domestic Violence: A Machine Learning Approach to Help Inform Arraignment Decisions," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 13(1), pages 94-115, March.
    2. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    3. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
    2. Liwei Chen & J. J. Po-An Hsieh & Arun Rai, 2022. "How Does Intelligent System Knowledge Empowerment Yield Payoffs? Uncovering the Adaptation Mechanisms and Contingency Role of Work Experience," Information Systems Research, INFORMS, vol. 33(3), pages 1042-1071, September.
    3. Runshan Fu & Ginger Zhe Jin & Meng Liu, 2022. "Does Human-algorithm Feedback Loop Lead to Error Propagation? Evidence from Zillow’s Zestimate," NBER Working Papers 29880, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khoa Hoang & Robert Faff, 2021. "Is the ex‐ante equity risk premium always positive? Evidence from a new conditional expectations model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(1), pages 95-124, March.
    2. Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
    3. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    4. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    5. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    6. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    7. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    8. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    9. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    10. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    11. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    12. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    13. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    14. Daníelsson, Jón & Macrae, Robert & Uthemann, Andreas, 2022. "Artificial intelligence and systemic risk," Journal of Banking & Finance, Elsevier, vol. 140(C).
    15. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    16. Daniel Carter & Amelia Acker & Dan Sholler, 2021. "Investigative approaches to researching information technology companies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(6), pages 655-666, June.
    17. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    18. Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
    19. Zhao, Shuping & Xu, Kai & Wang, Zhao & Liang, Changyong & Lu, Wenxing & Chen, Bo, 2022. "Financial distress prediction by combining sentiment tone features," Economic Modelling, Elsevier, vol. 106(C).
    20. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:empleg:v:16:y:2019:i:1:p:175-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1740-1461 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.