IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v84y2016i4p1345-1404.html
   My bibliography  Save this article

Market Microstructure Invariance: Empirical Hypotheses

Author

Listed:
  • Albert S. Kyle
  • Anna A. Obizhaeva

Abstract

Using the intuition that financial markets transfer risks in business time, “market microstructure invariance” is defined as the hypotheses that the distributions of risk transfers (“bets”) and transaction costs are constant across assets when measured per unit of business time. The invariance hypotheses imply that bet size and transaction costs have specific, empirically testable relationships to observable dollar volume and volatility. Portfolio transitions can be viewed as natural experiments for measuring transaction costs, and individual orders can be treated as proxies for bets. Empirical tests based on a data set of 400,000+ portfolio transition orders support the invariance hypotheses. The constants calibrated from structural estimation imply specific predictions for the arrival rate of bets (“market velocity”), the distribution of bet sizes, and transaction costs.

Suggested Citation

  • Albert S. Kyle & Anna A. Obizhaeva, 2016. "Market Microstructure Invariance: Empirical Hypotheses," Econometrica, Econometric Society, vol. 84(4), pages 1345-1404, July.
  • Handle: RePEc:wly:emetrp:v:84:y:2016:i:4:p:1345-1404
    DOI: 10.3982/ECTA10486
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA10486
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA10486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dufour, Alfonso & Engle, Robert F, 1999. "Time and the Price Impact of a Trade," University of California at San Diego, Economics Working Paper Series qt62c0h04j, Department of Economics, UC San Diego.
    2. Stoll, Hans R, 1978. "The Pricing of Security Dealer Services: An Empirical Study of NASDAQ Stocks," Journal of Finance, American Finance Association, vol. 33(4), pages 1153-1172, September.
    3. Emanuel Derman, 2002. "The perception of time, risk and return during periods of speculation," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 282-296.
    4. Joel Hasbrouck, 1999. "Trading Fast and Slow: Security Market Events in Real Time," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-012, New York University, Leonard N. Stern School of Business-.
    5. John Y. Campbell & Albert S. Kyle, 1993. "Smart Money, Noise Trading and Stock Price Behaviour," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(1), pages 1-34.
    6. Stoll, Hans R, 1978. "The Supply of Dealer Services in Securities Markets," Journal of Finance, American Finance Association, vol. 33(4), pages 1133-1151, September.
    7. Brennan, Michael J & Subrahmanyam, Avanidhar, 1998. "The Determinants of Average Trade Size," The Journal of Business, University of Chicago Press, vol. 71(1), pages 1-25, January.
    8. Emanuel Derman, 2002. "The Perception of Time, Risk and Return During Periods of Speculation," Papers cond-mat/0201345, arXiv.org.
    9. Ronald L. Goettler & Christine A. Parlour & Uday Rajan, 2005. "Equilibrium in a Dynamic Limit Order Market," Journal of Finance, American Finance Association, vol. 60(5), pages 2149-2192, October.
    10. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    11. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    12. Hasbrouck, Joel, 2007. "Empirical Market Microstructure: The Institutions, Economics, and Econometrics of Securities Trading," OUP Catalogue, Oxford University Press, number 9780195301649, Decembrie.
    13. Jiang Wang, 1993. "A Model of Intertemporal Asset Prices Under Asymmetric Information," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(2), pages 249-282.
    14. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    15. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    16. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    17. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    18. Kerry Back & Shmuel Baruch, 2004. "Information in Securities Markets: Kyle Meets Glosten and Milgrom," Econometrica, Econometric Society, vol. 72(2), pages 433-465, March.
    19. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    20. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    21. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    2. Mazza, Paolo, 2015. "Price dynamics and market liquidity: An intraday event study on Euronext," The Quarterly Review of Economics and Finance, Elsevier, vol. 56(C), pages 139-153.
    3. Dimitri Vayanos & Jiang Wang, 2012. "Market Liquidity -- Theory and Empirical Evidence," NBER Working Papers 18251, National Bureau of Economic Research, Inc.
    4. Danilova, Albina & Julliard, Christian, 2014. "Information asymmetries, volatility, liquidity, and the Tobin Tax," LSE Research Online Documents on Economics 60957, London School of Economics and Political Science, LSE Library.
    5. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    6. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    7. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
    8. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    9. Joel Hasbrouck, 2021. "Price Discovery in High Resolution," Journal of Financial Econometrics, Oxford University Press, vol. 19(3), pages 395-430.
    10. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    11. Jinliang Li & Chunchi Wu, 2006. "Daily Return Volatility, Bid-Ask Spreads, and Information Flow: Analyzing the Information Content of Volume," The Journal of Business, University of Chicago Press, vol. 79(5), pages 2697-2740, September.
    12. repec:uts:finphd:34 is not listed on IDEAS
    13. Pascual, Roberto & Pascual-Fuster, Bartolomé, 2014. "The relative contribution of ask and bid quotes to price discovery," Journal of Financial Markets, Elsevier, vol. 20(C), pages 129-150.
    14. Jun (Tony) Ruan & Tongshu Ma, 2017. "Bid-Ask Spread, Quoted Depths, and Unexpected Duration Between Trades," Journal of Financial Services Research, Springer;Western Finance Association, vol. 51(3), pages 385-436, June.
    15. Mudalige, Priyantha & Kalev, Petko S., 2024. "Under the microscope: Trade initiation activities around earnings and takeover announcements in a market with continuous disclosure," Global Finance Journal, Elsevier, vol. 63(C).
    16. Shafiqur Rahman & Chandrasekhar Krishnamurti & Alice Lee, 2005. "The Dynamics of Security Trades, Quote Revisions, and Market Depths for Actively Traded Stocks," Review of Quantitative Finance and Accounting, Springer, vol. 25(2), pages 91-124, September.
    17. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    18. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    19. Ibrahim, Boulis Maher & Kalaitzoglou, Iordanis Angelos, 2016. "Why do carbon prices and price volatility change?," Journal of Banking & Finance, Elsevier, vol. 63(C), pages 76-94.
    20. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    21. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:84:y:2016:i:4:p:1345-1404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.