IDEAS home Printed from https://ideas.repec.org/a/vls/finstu/v19y2015i2p8-16.html
   My bibliography  Save this article

A Copula-Garch Model For A Proxy Portfolio For Bet-Fi Index

Author

Listed:
  • ACATRINEI, Marius

    (Financial Supervisory Authority, Romania)

Abstract

The paper fits a copula-Garch model for a proxy portfolio of BET-FI index and computes its Expected Shorfall. We used daily closing prices spanning for a two year period. The results indicate that the portfolio’s Expected Shortfall computed with a copula-Garch is higher than otherwise reported by a naive Value at Risk. The VaR computed with variance-covariance method assumes a multivariate Gaussian distribution and produces results that constantly underestimates the risk due to incorrect distributional assumptions.

Suggested Citation

  • ACATRINEI, Marius, 2015. "A Copula-Garch Model For A Proxy Portfolio For Bet-Fi Index," Studii Financiare (Financial Studies), Centre of Financial and Monetary Research "Victor Slavescu", vol. 19(2), pages 8-16.
  • Handle: RePEc:vls:finstu:v:19:y:2015:i:2:p:8-16
    as

    Download full text from publisher

    File URL: ftp://www.eadr.ro/RePEc/vls/vls_pdf/vol19i2p8-16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    2. Eric Jondeau & Michael Rockinger, 2002. "Conditional Dependency of Financial Series: The Copula-GARCH Model," FAME Research Paper Series rp69, International Center for Financial Asset Management and Engineering.
    3. Chih‐Chiang Hsu & Chih‐Ping Tseng & Yaw‐Huei Wang, 2008. "Dynamic hedging with futures: A copula‐based GARCH model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(11), pages 1095-1116, November.
    4. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    5. Jondeau, Eric & Rockinger, Michael, 2006. "The Copula-GARCH model of conditional dependencies: An international stock market application," Journal of International Money and Finance, Elsevier, vol. 25(5), pages 827-853, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reboredo, Juan C., 2012. "Do food and oil prices co-move?," Energy Policy, Elsevier, vol. 49(C), pages 456-467.
    2. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    3. Fengler, Matthias & Okhrin, Ostap, 2012. "Realized Copula," Economics Working Paper Series 1214, University of St. Gallen, School of Economics and Political Science.
    4. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    5. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2010. "Out-of-sample comparison of copula specifications in multivariate density forecasts," Journal of Economic Dynamics and Control, Elsevier, vol. 34(9), pages 1596-1609, September.
    6. Zhou, Xinmiao & Qian, Huanhuan & Pérez-Rodríguez, Jorge. V. & González López-Valcárcel, Beatriz, 2020. "Risk dependence and cointegration between pharmaceutical stock markets: The case of China and the USA," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Yu-Sheng Lai, 2018. "Dynamic hedging with futures: a copula-based GARCH model with high-frequency data," Review of Derivatives Research, Springer, vol. 21(3), pages 307-329, October.
    8. Reboredo, Juan C. & Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu, 2015. "An analysis of dependence between Central and Eastern European stock markets," Economic Systems, Elsevier, vol. 39(3), pages 474-490.
    9. Shegorika Rajwani & Dilip Kumar, 2019. "Measuring Dependence Between the USA and the Asian Economies: A Time-varying Copula Approach," Global Business Review, International Management Institute, vol. 20(4), pages 962-980, August.
    10. Reboredo, Juan C., 2012. "Modelling oil price and exchange rate co-movements," Journal of Policy Modeling, Elsevier, vol. 34(3), pages 419-440.
    11. Albulescu, Claudiu Tiberiu & Aubin, Christian & Goyeau, Daniel & Tiwari, Aviral Kumar, 2018. "Extreme co-movements and dependencies among major international exchange rates: A copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 56-69.
    12. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    13. Fengler, Matthias R. & Okhrin, Ostap, 2016. "Managing risk with a realized copula parameter," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 131-152.
    14. Nathan Lael Joseph & Thi Thuy Anh Vo & Asma Mobarek & Sabur Mollah, 2020. "Volatility and asymmetric dependence in Central and East European stock markets," Review of Quantitative Finance and Accounting, Springer, vol. 55(4), pages 1241-1303, November.
    15. Amrouk, El Mamoun & Grosche, Stephanie-Carolin & Heckelei, Thomas, 2017. "An analysis of the interdependence between cash crop and staple food futures prices," Discussion Papers 265665, University of Bonn, Institute for Food and Resource Economics.
    16. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    17. Julien Chevallier & Florian Ielpo, 2013. "Volatility spillovers in commodity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 20(13), pages 1211-1227, September.
    18. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(2), pages 94-127, March.
    19. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    20. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.

    More about this item

    Keywords

    Garch model; Copula function; Stock Market Indices; Expected Shortfall;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vls:finstu:v:19:y:2015:i:2:p:8-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cfiarro.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniel Mateescu (email available below). General contact details of provider: https://edirc.repec.org/data/cfiarro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.