IDEAS home Printed from https://ideas.repec.org/a/url/izvest/v19y2018i1p79-93.html
   My bibliography  Save this article

A Model for Comprehensive Price-Dependent Management of Industrial Enterprises’ Demand for Electricity and Gas

Author

Listed:
  • Anatoly P. Dzyuba

    (Scientific Research Center “Energetichesky Menedzhment”)

  • Irina A. Solovyeva

    (South Ural State University (National Research University))

Abstract

The article aims to develop an integrated model for energy costs management that allows large con? sumers of energy resources to perform price-dependent management of the demand for electricity and natural gas. The authors analyse specific features of a modern mechanism for increasing energy efficiency through the management of demand for electricity. The study of parameters of demand for natural gas and the identification of common technological and economic characteristics of using electricity and natural gas confirm that integrated demand management for these energy resources is possible. The arti? cle presents the results of the analysis of the existing conditions in wholesale and retail electricity markets and principles of natural gas pricing, which proved the possibility of comprehensive price-dependent management of demand for electricity and natural gas in the current economic situation. The findings enabled the authors to design a model of comprehensive price-dependent management of demand for electricity and natural gas, which offers consumers of energy resources a possibility to adjust their sched? ule of production processes and demand for energy resources taking into account the price parameters of electricity and natural gas supply to minimise the costs.

Suggested Citation

  • Anatoly P. Dzyuba & Irina A. Solovyeva, 2018. "A Model for Comprehensive Price-Dependent Management of Industrial Enterprises’ Demand for Electricity and Gas," Journal of New Economy, Ural State University of Economics, vol. 19(1), pages 79-93, February.
  • Handle: RePEc:url:izvest:v:19:y:2018:i:1:p:79-93
    DOI: 10.29141/2073-1019-2018-19-1-7
    as

    Download full text from publisher

    File URL: http://izvestia.usue.ru/images/download/75/7.pdf
    Download Restriction: no

    File URL: http://izvestia.usue.ru/en/-2018/717
    Download Restriction: no

    File URL: https://libkey.io/10.29141/2073-1019-2018-19-1-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David S. Loughran and Jonathan Kulick, 2004. "Demand-Side Management and Energy Efficiency in the United States," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 19-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anatoly P. Dzyuba & Irina A. Solovyeva, 2020. "Demand-side management in the Smart City concept," Upravlenets, Ural State University of Economics, vol. 11(2), pages 53-66, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horowitz, Marvin J. & Bertoldi, Paolo, 2015. "A harmonized calculation model for transforming EU bottom-up energy efficiency indicators into empirical estimates of policy impacts," Energy Economics, Elsevier, vol. 51(C), pages 135-148.
    2. Gilbert E. Metcalf, 2006. "Energy Conservation in the United States: Understanding its Role in Climate Policy," NBER Working Papers 12272, National Bureau of Economic Research, Inc.
    3. Eissa, M.M., 2018. "First time real time incentive demand response program in smart grid with “i-Energy” management system with different resources," Applied Energy, Elsevier, vol. 212(C), pages 607-621.
    4. Diffney, Seán & Lyons, Seán & Malaguzzi Valeri, Laura, 2013. "Evaluation of the effect of the Power of One campaign on natural gas consumption," Energy Policy, Elsevier, vol. 62(C), pages 978-988.
    5. Khan, Muhammad Azhar & Khan, Muhammad Zahir & Zaman, Khalid & Arif, Mariam, 2014. "Global estimates of energy-growth nexus: Application of seemingly unrelated regressions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 63-71.
    6. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    7. repec:url:i20181:v:19:y:2018:i:1:p:79-93 is not listed on IDEAS
    8. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    9. Jenya Kahn-Lang, 2016. "The Effects of Electric Utility Decoupling on Energy Efficiency," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. van Megen, Bram & Bürer, Meinrad & Patel, Martin K., 2019. "Comparing electricity consumption trends: A multilevel index decomposition analysis of the Genevan and Swiss economy," Energy Economics, Elsevier, vol. 83(C), pages 1-25.
    11. Chong, Howard, 2012. "Building vintage and electricity use: Old homes use less electricity in hot weather," European Economic Review, Elsevier, vol. 56(5), pages 906-930.
    12. Frondel, Manuel & Schmidt, Christoph M., 2005. "Evaluating environmental programs: The perspective of modern evaluation research," Ecological Economics, Elsevier, vol. 55(4), pages 515-526, December.
    13. Papineau, Maya, 2017. "Setting the standard? A framework for evaluating the cost-effectiveness of building energy standards," Energy Economics, Elsevier, vol. 64(C), pages 63-76.
    14. Aalbers, R.F.T. & Vollebergh, H.R.J. & de Groot, H.L.F., 2011. "Reducing Rents from Energy Technology Adoption Programs by Exploiting Observable Information," Discussion Paper 2011-109, Tilburg University, Center for Economic Research.
    15. Wilson, Elizabeth J. & Plummer, Joseph & Fischlein, Miriam & Smith, Timothy M., 2008. "Implementing energy efficiency: Challenges and opportunities for rural electric co-operatives and small municipal utilities," Energy Policy, Elsevier, vol. 36(9), pages 3383-3397, September.
    16. Lizhi Wang & Anhua Lin & Yihsu Chen, 2010. "Potential impact of recharging plug‐in hybrid electric vehicles on locational marginal prices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 686-700, December.
    17. Ejaz Gul & Imran Sharif Chaudhry, 2016. "Socio-Economic Analysis of Household Energy Security: Evidence from 3D Energy Losses Surface Maps (ELSMs)of a Town Using Conjuncture of Factors Matrix, Digital and Mathematical Analysis," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 1019-1041.
    18. Derya Eryilmaz, Timothy M. Smith, and Frances R. Homans, 2017. "Price Responsiveness in Electricity Markets: Implications for Demand Response in the Midwest," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    19. Gillingham, Kenneth & Newell, Richard G. & Palmer, Karen L., 2004. "Retrospective Examination of Demand-Side Energy Efficiency Policies," Discussion Papers 10477, Resources for the Future.
    20. Olsthoorn, Mark & Schleich, Joachim & Gassmann, Xavier & Faure, Corinne, 2017. "Free riding and rebates for residential energy efficiency upgrades: A multi-country contingent valuation experiment," Energy Economics, Elsevier, vol. 68(S1), pages 33-44.
    21. Walawalkar, Rahul & Blumsack, Seth & Apt, Jay & Fernands, Stephen, 2008. "An economic welfare analysis of demand response in the PJM electricity market," Energy Policy, Elsevier, vol. 36(10), pages 3692-3702, October.

    More about this item

    Keywords

    demand management; price-dependent consumption; energy efficiency; electricity consumption; natural gas consumption; retail electricity market; pricing; energy costs.;
    All these keywords.

    JEL classification:

    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:url:izvest:v:19:y:2018:i:1:p:79-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Victor Blaginin (email available below). General contact details of provider: https://edirc.repec.org/data/usueeru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.