IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v13y2013isup01p5-21.html
   My bibliography  Save this article

A low-carbon society: global visions, pathways, and challenges

Author

Listed:
  • Mikiko Kainuma
  • Kyoko Miwa
  • Tomoki Ehara
  • Osamu Akashi
  • Yumiko Asayama

Abstract

The feasibility of two low-carbon society (LCS) scenarios, one with and one without nuclear power and carbon capture and storage (CCS), is evaluated using the AIM/Enduse[Global] model. Both scenarios suggest that achieving a 50% emissions reduction target (relative to 1990 levels) by 2050 is technically feasible if locally suited technologies are introduced and the relevant policies, including necessary financial transfers, are appropriately implemented. In the scenario that includes nuclear and CCS options, it will be vital to consider the risks and acceptance of these technologies. In the scenario without these technologies, the challenge will be how to reduce energy service demand. In both scenarios, the estimated investment costs will be higher in non-Annex I countries than in Annex I countries. Finally, the enhancement of capacity building to support the deployment of locally suited technologies will be central to achieving an LCS. Policy relevance Policies to reduce GHG emissions up to 2050 are critical if the long-term target of stabilizing the climate is to be achieved. From a policy perspective, the cost and social acceptability of the policy used to reduce emissions are two of the key factors in determining the optimal pathways to achieve this. However, the nuclear accident at Fukushima highlighted the risk of depending on large-scale technologies for the provision of energy and has led to a backlash against the use of nuclear technology. It is found that if nuclear and CCS are used it will be technically feasible to halve GHG emissions by 2050, although very costly. However, although the cost of halving emissions will be about the same if neither nuclear nor CCS is used, a 50% reduction in emissions reduction will not be achievable unless the demand for energy service is substantially reduced.

Suggested Citation

  • Mikiko Kainuma & Kyoko Miwa & Tomoki Ehara & Osamu Akashi & Yumiko Asayama, 2013. "A low-carbon society: global visions, pathways, and challenges," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 5-21, March.
  • Handle: RePEc:taf:tcpoxx:v:13:y:2013:i:sup01:p:5-21
    DOI: 10.1080/14693062.2012.738016
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2012.738016
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2012.738016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iea, 2011. "Combining Bioenergy with CCS: Reporting and Accounting for Negative Emissions under UNFCCC and the Kyoto Protocol," IEA Energy Papers 2011/16, OECD Publishing.
    2. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    3. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2022. "Investigating low-carbon pathways for hydrocarbon-dependent rentier states: Economic transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    2. Fujimori, S. & Kainuma, M. & Masui, T. & Hasegawa, T. & Dai, H., 2014. "The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation," Energy Policy, Elsevier, vol. 75(C), pages 379-391.
    3. Wenhui Tian & Pascal da Costa & Jean-Claude Bocquet, 2015. "Inequalities of Sectors CO 2 emissions in China, USA and France, 2010-2050," Working Papers hal-01219769, HAL.
    4. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    5. Morley, Janine, 2018. "Rethinking energy services: The concept of ‘meta-service’ and implications for demand reduction and servicizing policy," Energy Policy, Elsevier, vol. 122(C), pages 563-569.
    6. Muhammad Muhitur Rahman & Mohammad Shahedur Rahman & Saidur R. Chowdhury & Alaeldeen Elhaj & Shaikh Abdur Razzak & Syed Abu Shoaib & Md Kamrul Islam & Mohammed Monirul Islam & Sayeed Rushd & Syed Masi, 2022. "Greenhouse Gas Emissions in the Industrial Processes and Product Use Sector of Saudi Arabia—An Emerging Challenge," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    7. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    2. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    3. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    4. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    5. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    6. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    7. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    8. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    9. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    10. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    11. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    12. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    13. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    14. van der Zwaan, Bob & Kober, Tom & Calderon, Silvia & Clarke, Leon & Daenzer, Katie & Kitous, Alban & Labriet, Maryse & Lucena, André F.P. & Octaviano, Claudia & Di Sbroiavacca, Nicolas, 2016. "Energy technology roll-out for climate change mitigation: A multi-model study for Latin America," Energy Economics, Elsevier, vol. 56(C), pages 526-542.
    15. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    16. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    17. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    18. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    19. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    20. Clarke, Fiona & Dorneanu, Bogdan & Mechleri, Evgenia & Arellano-Garcia, Harvey, 2021. "Optimal design of heating and cooling pipeline networks for residential distributed energy resource systems," Energy, Elsevier, vol. 235(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:13:y:2013:i:sup01:p:5-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.