IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Estimation Strategies for a Spatial Dynamic Panel using GMM. A New Approach to the Convergence Issue of European Regions

  • Salima Bouayad-Agha
  • Lionel Védrine

Abstract While estimation methods for dynamic panel data and spatial econometric models are standard in economic literature, there has been a relatively recent development in methods which include spatial considerations in dynamic panel data models. This paper proposes two estimation strategies for spatial dynamic panel data models using the generalized method of moments (GMM). The first is to extend the moment restrictions of Arellano and Bond's estimator to a spatial autoregressive dynamic panel. The second allows for spatial dependence in the error process. The empirical application focuses on European regional growth over a 25-year period. We find empirical evidence of conditional convergence, which is significantly affected by spatial disparities. Stratégies d'estimation pour un panel dynamique spatial faisant usage de GMM. Une nouvelle approche pour le problème de la convergence de régions d'Europe Rèsumè Bien que les méthodes d'estimation pour les données de panels dynamiques, et les modèles économétriques spatiaux, sont des instruments standards dans les ouvrages d’économie, on a assisté à une évolution relativement récente des méthodes, qui comprend des considérations spatiales dans les modèles de panels dynamiques. La présente communication propose deux stratégies d'estimation concernant des modèles de données de panel dynamique spatiales faisant usage de la méthodes des moments généralisés (MMG). La première consiste à étendre les restrictions de moments de l'estimateur d'Arellano et Bond à un panel dynamique autorégressif spatial. La deuxième tient compte de la dépendance spatiale dans le processus des erreurs. L'application empirique se concentre sur l'expansion régionale en Europe au cours d'une période de 25 ans. Nous relevons des preuves empiriques de convergence conditionnelle, qui sont affectées de façon significative par des disparités spatiales. Estrategias de estimación para un panel dinámico espacial utilizando GMM. Un nuevo planteamiento de la cuestión de la convergencia de regiones europeas Extracto Aunque los métodos de estimación para datos dinámicos de panel y modelos econométricos espaciales son estándar en la bibliografía económica, se ha producido un desarrollo relativamente reciente en dichos métodos que incluye consideraciones espaciales en modelos de datos dinámicos de panel. Este estudio propone dos estrategias de estimación para los modelos de datos espaciales dinámicos de panel utilizando el método general de momentos (GMM). El primero sirve para extender las restricciones de momentos del estimador de Arellano y Bond a un panel espacial dinámico autorregresivo. El segundo tiene en cuenta una dependencia espacial en el proceso de error. La aplicación empírica se centra en el crecimiento regional europeo en un período de 25 años. Descubrimos evidencia empírica de convergencia condicional, que es afectada significativamente por disparidades espaciales.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Spatial Economic Analysis.

Volume (Year): 5 (2010)
Issue (Month): 2 ()
Pages: 205-227

in new window

Handle: RePEc:taf:specan:v:5:y:2010:i:2:p:205-227
DOI: 10.1080/17421771003730711
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:5:y:2010:i:2:p:205-227. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.