IDEAS home Printed from https://ideas.repec.org/a/taf/rjusxx/v22y2018i1p17-37.html
   My bibliography  Save this article

Interactions between the built and socio-economic environment and driver demographics: spatial econometric models of car crashes in the Columbus Metropolitan Area

Author

Listed:
  • Dongkwan Lee
  • Jean-Michel Guldmann
  • Burkhard von Rabenau

Abstract

This research analyzes car crashes resulting from the interactions between (1) the characteristics of the built and socio-economic environment where the crashes take place and (2) the gender and age of the driver at fault. Crashes are classified in terms of seriousness (fatalities/injuries, property damages only) and driver demographics. Data are drawn for the Central Ohio Region over 2006–2011 from the multiple files of the crash database of the Ohio Department of Public Safety. These data are aggregated over Traffic Analysis Zones (TAZ). Additional data include socio-economic, land-use, public transit, road network, and other locational/physical factors, also specified at the TAZ level. Regression analysis is used to explain the numbers of crashes in each of 12 groups. Three age groups are considered: young (15–24), adult (25–64), and older (65+). Spatial autocorrelation effects are tested and corrected by estimating spatial econometric models. The implications of the results for transportation safety policy are discussed.

Suggested Citation

  • Dongkwan Lee & Jean-Michel Guldmann & Burkhard von Rabenau, 2018. "Interactions between the built and socio-economic environment and driver demographics: spatial econometric models of car crashes in the Columbus Metropolitan Area," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 22(1), pages 17-37, January.
  • Handle: RePEc:taf:rjusxx:v:22:y:2018:i:1:p:17-37
    DOI: 10.1080/12265934.2017.1369452
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/12265934.2017.1369452
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/12265934.2017.1369452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebert Kuhlmann, A.K. & Brett, J. & Thomas, D. & Sain, S.R., 2009. "Environmental characteristics associated with pedestrian-motor vehicle collisions in Denver, Colorado," American Journal of Public Health, American Public Health Association, vol. 99(9), pages 1632-1637.
    2. Daniel J. Graham & Stephen Glaister, 2003. "Spatial Variation in Road Pedestrian Casualties: The Role of Urban Scale, Density and Land-use Mix," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1591-1607, July.
    3. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyunho Chang & Dongjoo Park, 2020. "Potentialities of Vehicle Trajectory Big Data for Monitoring Potentially Fatigued Drivers and Explaining Vehicle Crashes on Motorway Sections," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    2. Dongkwan Lee & Jean-Michel Guldmann & Burkhard von Rabenau, 2023. "Impact of Driver’s Age and Gender, Built Environment, and Road Conditions on Crash Severity: A Logit Modeling Approach," IJERPH, MDPI, vol. 20(3), pages 1-22, January.
    3. Tibor Sipos & Anteneh Afework Mekonnen & Zsombor Szabó, 2021. "Spatial Econometric Analysis of Road Traffic Crashes," Sustainability, MDPI, vol. 13(5), pages 1-16, February.
    4. Dongkwan Lee & Jean-Michel Guldmann & Choongik Choi, 2019. "Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers," Sustainability, MDPI, vol. 11(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    4. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    5. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    6. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    7. Ruru Xing & Zimu Li & Xiaoyu Cai & Zepeng Yang & Ningning Zhang & Tao Yang, 2023. "Accident Rate Prediction Model for Urban Expressway Underwater Tunnel," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    8. Ulak, Mehmet Baran & Ozguven, Eren Erman & Spainhour, Lisa & Vanli, Omer Arda, 2017. "Spatial investigation of aging-involved crashes: A GIS-based case study in Northwest Florida," Journal of Transport Geography, Elsevier, vol. 58(C), pages 71-91.
    9. Milhan Moomen & Amirarsalan Mehrara Molan & Khaled Ksaibati, 2023. "A Random Parameters Multinomial Logit Model Analysis of Median Barrier Crash Injury Severity on Wyoming Interstates," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    10. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    11. Hwachyi Wang & S. K. Jason Chang & Hans De Backer & Dirk Lauwers & Philippe De Maeyer, 2019. "Integrating Spatial and Temporal Approaches for Explaining Bicycle Crashes in High-Risk Areas in Antwerp (Belgium)," Sustainability, MDPI, vol. 11(13), pages 1-28, July.
    12. Sun, Chenshuo & Pei, Xin & Hao, Junheng & Wang, Yewen & Zhang, Zuo & Wong, S.C., 2018. "Role of road network features in the evaluation of incident impacts on urban traffic mobility," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 101-116.
    13. Buckley, Cathal & Howley, Peter & Jordan, Phil, 2015. "The role of differing farming motivations on the adoption of nutrient management practices," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 4(4), July.
    14. repec:plo:pmed00:1000228 is not listed on IDEAS
    15. Chi, Guangqing & Porter, Jeremy R. & Cosby, Arthur G. & Levinson, David, 2013. "The impact of gasoline price changes on traffic safety: a time geography explanation," Journal of Transport Geography, Elsevier, vol. 28(C), pages 1-11.
    16. Kojiro Matsuo & Kosuke Miyazaki & Nao Sugiki, 2022. "A Method for Locational Risk Estimation of Vehicle–Children Accidents Considering Children’s Travel Purposes," IJERPH, MDPI, vol. 19(21), pages 1-16, October.
    17. Hana Naghawi, 2018. "Negative Binomial Regression Model for Road Crash Severity Prediction," Modern Applied Science, Canadian Center of Science and Education, vol. 12(4), pages 1-38, April.
    18. Rose Luke, 2023. "Current and Future Trends in Driver Behaviour and Traffic Safety Scholarship: An African Research Agenda," IJERPH, MDPI, vol. 20(5), pages 1-23, February.
    19. Guilong Xu & Jinliang Xu & Chao Gao & Rishuang Sun & Huagang Shan & Yongji Ma & Jinsong Ran, 2022. "A Novel Safety Assessment Framework for Pavement Friction Evolution Due to Traffic on Horizontal Curves," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    20. Chen Chen & Feng Guo, 2016. "Evaluating the influence of crashes on driving risk using recurrent event models and Naturalistic Driving Study data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2225-2238, September.
    21. Yajie Zou & Xinzhi Zhong & Jinjun Tang & Xin Ye & Lingtao Wu & Muhammad Ijaz & Yinhai Wang, 2019. "A Copula-Based Approach for Accommodating the Underreporting Effect in Wildlife‒Vehicle Crash Analysis," Sustainability, MDPI, vol. 11(2), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:rjusxx:v:22:y:2018:i:1:p:17-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/rjus20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.