IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i4p1678-1690.html
   My bibliography  Save this article

Scalable Bayesian Estimation in the Multinomial Probit Model

Author

Listed:
  • Rubén Loaiza-Maya
  • Didier Nibbering

Abstract

The multinomial probit (MNP) model is a popular tool for analyzing choice behavior as it allows for correlation between choice alternatives. Because current model specifications employ a full covariance matrix of the latent utilities for the choice alternatives, they are not scalable to a large number of choice alternatives. This article proposes a factor structure on the covariance matrix, which makes the model scalable to large choice sets. The main challenge in estimating this structure is that the model parameters require identifying restrictions. We identify the parameters by a trace-restriction on the covariance matrix, which is imposed through a reparameterization of the factor structure. We specify interpretable prior distributions on the model parameters and develop an MCMC sampler for parameter estimation. The proposed approach significantly improves performance in large choice sets relative to existing MNP specifications. Applications to purchase data show the economic importance of including a large number of choice alternatives in consumer choice analysis.

Suggested Citation

  • Rubén Loaiza-Maya & Didier Nibbering, 2022. "Scalable Bayesian Estimation in the Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1678-1690, October.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1678-1690
    DOI: 10.1080/07350015.2021.1961788
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2021.1961788
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2021.1961788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruben Loaiza-Maya & Didier Nibbering & Dan Zhu, 2023. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Papers 2306.14445, arXiv.org.
    2. Michelle Sovinsky & Liana Jacobi & Alessandra Allocca & Tao Sun, 2023. "More than Joints: Multi-Substance Use, Choice Limitations, and Policy Implications," Rationality and Competition Discussion Paper Series 487, CRC TRR 190 Rationality and Competition.
    3. Loaiza-Maya, Rubén & Nibbering, Didier & Zhu, Dan, 2024. "Hybrid unadjusted Langevin methods for high-dimensional latent variable models," Journal of Econometrics, Elsevier, vol. 241(2).
    4. Michelle Sovinsky & Liana Jacobi & Alessandra Allocca & Tao Sun, 2024. "More than Joints: Multi-Substance Use, Choice Limitations, and Policy Implications," CRC TR 224 Discussion Paper Series crctr224_2024_501, University of Bonn and University of Mannheim, Germany.
    5. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    6. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    7. Riccardo Lucchetti & Luca Pedini, 2024. "The Spherical Parametrisation for Correlation Matrices and its Computational Advantages," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1023-1046, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1678-1690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.