IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v29y2010i5-6p642-687.html
   My bibliography  Save this article

Time Series Mixtures of Generalized t Experts: ML Estimation and an Application to Stock Return Density Forecasting

Author

Listed:
  • Alexandre Carvalho
  • Georgios Skoulakis

Abstract

We propose and analyze a new nonlinear time series model based on local mixtures of linear regressions, referred to as experts, with thick-tailed disturbances. The mean function of each expert is an affine function of covariates that may include lags of the dependent variable and/or lags of external predictors. The mixing of the experts is determined by a latent variable, the distribution of which depends on the same covariates used in the regressions. The expert error terms are assumed to follow the generalized t distribution, a rather flexible parametric form encompassing the standard t and normal distributions as special cases and allowing separate modeling of scale and kurtosis. We show consistency and asymptotic normality of the maximum likelihood estimator, for correctly specified and for misspecified models, and provide Monte Carlo evidence on the performance of standard model selection criteria in selecting the number of experts. We further employ the model to obtain density forecasts for daily stock returns and find evidence to support the model.

Suggested Citation

  • Alexandre Carvalho & Georgios Skoulakis, 2010. "Time Series Mixtures of Generalized t Experts: ML Estimation and an Application to Stock Return Density Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 642-687.
  • Handle: RePEc:taf:emetrv:v:29:y:2010:i:5-6:p:642-687 DOI: 10.1080/07474938.2010.481987
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474938.2010.481987
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, pages 1455-1508.
    3. PALM, Franz C. & ZELLNER, Arnold, "undated". "To Combine or not to Combine? Issues of Combining Forecasts," CORE Discussion Papers RP 1027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Li Fuchun & Tkacz Greg, 2004. "Combining Forecasts with Nonparametric Kernel Regressions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(4), pages 1-18, December.
    5. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, pages 191-221.
    7. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    8. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    9. Todd E. Clark & Michael W. McCracken, 2009. "Combining Forecasts from Nested Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 303-329, June.
    10. repec:cor:louvrp:-1027 is not listed on IDEAS
    11. Hibon, Michele & Evgeniou, Theodoros, 2005. "To combine or not to combine: selecting among forecasts and their combinations," International Journal of Forecasting, Elsevier, vol. 21(1), pages 15-24.
    12. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    13. Diebold, Francis X., 1989. "Forecast combination and encompassing: Reconciling two divergent literatures," International Journal of Forecasting, Elsevier, vol. 5(4), pages 589-592.
    14. Coulson, N.E. & Robins, R.P., 1989. "Forecast Combination In A Dynamic Setting," Papers 8-88-4, Pennsylvania State - Department of Economics.
    15. Shen, Xiaotong & Huang, Hsin-Cheng, 2006. "Optimal Model Assessment, Selection, and Combination," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 554-568, June.
    16. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    17. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    18. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    19. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    20. Yeung Lewis Chan & James H. Stock & Mark W. Watson, 1999. "A dynamic factor model framework for forecast combination," Spanish Economic Review, Springer;Spanish Economic Association, pages 91-121.
    21. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    22. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
    23. Engle, Robert F. & Granger, C. W. J. & Kraft, Dennis, 1984. "Combining competing forecasts of inflation using a bivariate arch model," Journal of Economic Dynamics and Control, Elsevier, vol. 8(2), pages 151-165, November.
    24. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    25. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    26. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    27. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    28. Deutsch, Melinda & Granger, Clive W. J. & Terasvirta, Timo, 1994. "The combination of forecasts using changing weights," International Journal of Forecasting, Elsevier, vol. 10(1), pages 47-57, June.
    29. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:29:y:2010:i:5-6:p:642-687. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.