IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v29y2010i5-6p642-687.html
   My bibliography  Save this article

Time Series Mixtures of Generalized t Experts: ML Estimation and an Application to Stock Return Density Forecasting

Author

Listed:
  • Alexandre Carvalho
  • Georgios Skoulakis

Abstract

We propose and analyze a new nonlinear time series model based on local mixtures of linear regressions, referred to as experts, with thick-tailed disturbances. The mean function of each expert is an affine function of covariates that may include lags of the dependent variable and/or lags of external predictors. The mixing of the experts is determined by a latent variable, the distribution of which depends on the same covariates used in the regressions. The expert error terms are assumed to follow the generalized t distribution, a rather flexible parametric form encompassing the standard t and normal distributions as special cases and allowing separate modeling of scale and kurtosis. We show consistency and asymptotic normality of the maximum likelihood estimator, for correctly specified and for misspecified models, and provide Monte Carlo evidence on the performance of standard model selection criteria in selecting the number of experts. We further employ the model to obtain density forecasts for daily stock returns and find evidence to support the model.

Suggested Citation

  • Alexandre Carvalho & Georgios Skoulakis, 2010. "Time Series Mixtures of Generalized t Experts: ML Estimation and an Application to Stock Return Density Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 642-687.
  • Handle: RePEc:taf:emetrv:v:29:y:2010:i:5-6:p:642-687
    DOI: 10.1080/07474938.2010.481987
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474938.2010.481987
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    2. Raffaella Giacomini & Andreas Gottschling & Christian Haefke & Halbert White, 2002. "Hypernormal Densities," Boston College Working Papers in Economics 584, Boston College Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:29:y:2010:i:5-6:p:642-687. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.